设limun=正无穷,un>0

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 09:55:26
设limun=正无穷,un>0
连续函数性质设f(x)在[a,正无穷)上连续,取正值,且lim(x趋近无穷)f(x)=0,证明必存在x0从属[a,正无穷

任意取x1>a,因为x----正无穷时,f(x)----0,故对于正数f(x1),存在正数N,使x>N时,|f(x)-0|f(x)又在闭区间[a,N]上,应用最大最小值定理:在区间[a,N]至少有一点

设函数f(x)是定义在(0,正无穷)上是增函数,f(2)=1,对任意m,n属于(0,正无穷)

(1)令m=1,n=1得f(mn)=f(1)=f(1)+f(1)所以f(1)=0令m=2,n=2代入得f(4)=f(2)+f(2)=1+1=2(2)f(a)+f(a-3)=f(a×(a-3))=f(a

级数(Un-1)收敛'则limUn的值为什么是1

级数收敛的必要条件是一般项的极限为0.即lim(Un-1)=0,所以lim(Un)=1.再问:问一下为什么∫xdx=∫1dx再问:应该是∫xdlnx为什么等于∫1d x再答:再问:为什么l

若当n趋向于无穷时,limun=a,证明:当n趋向于无穷时lim|un|=|a|

由limun=a,知对于任意的e>0,存在自然数k0,使得n>k0时,有|un-a|k0时,||un|-|a||小于等于|un-a|

设limUn=a,若a不为零,试用定义证明:limUn+1/Un=1

limUn=a由定义,得到:任意ε>0,存在N,当n>N,有|Un-a|

若 limUn=a,证明 lim|Un|=|a|,并举例说明反过来未必成立.

∵limUn=a∴根据极限定义知,对任意ε>0,存在N>0,当n>N时,有│Un-a│

交错级数莱布尼茨定理如题,莱布尼茨定理为Un>U(n+1),limUn=0,级数收敛,级数通项(-1)^(n-1)Un,

级数定理.是无穷求和的,通项趋于0,得到级数收敛.不用管(-1)^n项,趋于0,不会因为正负而改变.前项大于后项是不包括那符号的,级数收敛的必要条件,得递减嘛

设函数f(x)是偶函数,且在(负无穷,0)上是增函数,判断f(x)在(0,正无穷)上的单调性,并加以证明

在(0,正无穷)上是减函数,用单调函数的定义法证明假设x1>x2>0,现在考察f(x1)与f(x2)的大小关系.由x1>x2>0,则-x1

设Un>=0,且{NUn}有界,证明:级数∑Un^2收敛(n从1到无穷)

设NUn再问:高手,下边也写出来呗,要步骤,这部分没看呢,要考试啦!再答:∑1/N^2就是收敛的啊

证明若级数∑un满足(1)limun=0,(2)∑(u2n-1+u2n)收敛,则∑un收敛

参考例题:证明:如果正级数∑Un收敛,则∑Un^α(α>1)收敛答案:∵limUn=0lim(Un^a/un)=lim(un^(a-1))=0正级数∑Un收敛,则∑Un^α(α>1)收敛

证明limun=a的充分必要条件是lim(un-a)=0

limun=a等价于:任意ε>0,存在N,使得当n>N时,|un-a|0,存在N,使得当n>N时,|(un-a)-0|

设limun=a,且a>b,证明一定存在N属于N+,使n>N时,un>b恒成立

取ε=a-b>0,则存在N>0,使当n>N时|un-a|所以-ε则un>a-ε=b.

概率论负无穷到正无穷积分为什么等于0到正无穷积分

你看题目,是不是 x<0时,f(x)=0 所以在负无穷到0积分值为0 就直接从0到正无穷积分

设数列{Un}收敛,则n→∞时limUn=limUn+k是否成立

设数列收敛于t那么有lim[n->∞]U[n]=t且lim[n->∞]U[n+k]=lim[(n+k)->∞]U[n+k]=t所以n->∞时,limU[n]=limU[n+k]

(1)设函数f(x)是定义(负无穷,0)∪(0,正无穷)在上的函数

像这一类题,只要把等式右边凑出f(…)这个括号里的东西就可以了.第一题是不是漏了个“f”?

设数列{Xn}有界,又lim(n->正无穷)Yn=0,证明:lim(n->正无穷)XnYn=0.定义法

如果存在M>0,对任意的n都有:|xn|≤M,称数列{xn}有界.所以lim(n->正无穷)Xn=M故lim(n->正无穷)XnYn=[lim(n->正无穷)Xn]*[lim(n->正无穷)Yn]=M

若limUn=a,证明lim|Un|=|a|.并举例说明,数列|Un|收敛时,数列Un未必收敛

下面所有lim均指n趋于正无穷大时由limUn=a,则任取ε>0,存在N,使得任意n>N有|Un-a|N有||Un|-|a||

若limun=0 则级数∑un 收敛么

不一定,判定一个涵数收敛除了极限,还有定义域.两个条件缺一不可