OB,OA是圆O的半径C是圆O上一点∠AOB=40度

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 14:22:59
OB,OA是圆O的半径C是圆O上一点∠AOB=40度
1 如图1,OA,OB是圆O的两条半径,且OA垂直OB,点C是OB的延长线上的任意一点,过点C作CD切圆O于点D,连接A

1.连接OD∵AO垂直于OB∴∠AOB=90°∵D为圆O的切点,且OD为半径∴∠0DC=90°∵A0=0D∴∠0AE=∠ODE又∵∠A0B=∠0DC=90°∴∠0DC-∠0DE=∠A0B-∠0AE=∠

已知,OA、OB是圆O的半径,且OA⊥OB,点P为OA上任一点,BP延长交圆O于点.

(1)连接OQ∵QE为圆O的切线∴∠OQE=∠OQB+∠BQA+∠AQE=90°∵OQ=OB∴∠OQB=∠OBP∠BQA=∠AOB/2=45°故∠OBP+∠AQE=45°(2)∠OBP+∠AQE=45

如图,在圆O中,OA⊥OB,C是AB弧上的一点,CD⊥OA,CE⊥OB,D,E为垂足.若圆O的半径为7.求DE的长度.

由OA⊥OB,CD⊥OA,CE⊥OB得四边形DCEO是矩形连接OC所以OC=DE因为OC是为径,即7所以DE=7

OA OB 是圆O的半径 OA垂直于OB C为OB延长线上一点 CD切圆O于点D E为AD与OC

分析:根据切线的性质,以及直角三角形的性质,直角三角形的两锐角互余,即可证明∠ADC=∠AEO,从而得到∠DEC=∠ADC,根据三角形中,等角对等边即可证明△CDE是等腰三角形,即CD=CE.∵CD切

OB OA是圆O的半径,并且AO⊥OB,P是OA上任意一点,BP的延长线交圆O于Q,过Q点切线交OA的延长线于R,求证:

因为OB=OQ所以∠OBQ=∠OQB∠OBQ+∠BPO=90度∠OQB+∠RQP=90度所以∠BPO=∠RQP∠RQP=∠RPQ所以RP=PQ

如图所示是圆O的部分图形,OA.OB是圆O的两条互相垂直的半径,点M是弦AB的中点,过点M做MC//OA,交弧AB于点C

过M、C作ME⊥AO于E,CF⊥AO于F,连OC∵M为AB的中点,∴ME=1/2 OB,易证MEFC为矩形∴CF= 1/2 OB= 1/2 OC,∠C

如图所示是⊙O的部分图形,OA、OB是圆O的两条互相垂直的半径,点M是弦AB的中点,过点M作MC∥OA,交AB于点C.求

证明:连结OC,延长CM交OB于D,如图,∵点M是弦AB的中点,MC∥OA,∴点D为OB的中点,∴OD=12OB=12OC,在Rt△OCD中,∠DOC=30°,∴∠AOC=30°,∴∠AOC=13∠A

AB是圆o的直径,弦DE垂直平分半径OA,C为垂足,弦DF与半径OB交点P,连接EF,EO.

设半径为R在三角形OCE中用勾股定理(1/2R)^2+3=R^2得R=2则角OEC为30度连接OF圆心角EOF为90度(因为对应圆周角角D为45度)三角形OEF直角三角形所以EF=2根号2三角形OEF

已知OA、OB是圆O的两条半径,C、D为OA、OB上的两点.且OC=OD,求证AD=BC

证明:因为OA,OB都是圆O的半径所以OB=OA又因为OC=OD,角COB=角DOA所以三角形COB全等于三角形DOA所以AD=BC

已知,如图,OA,OB是圆O的半径,M,N分别是OA,OB的中点,点C是弧AB的中点,求证:MC=NC

用全等证明证明∵OA,OB是圆O的半径∴OA=OB又∵MN为OAOB中点∴OM=ON(1)∵点C是弧AB的中点∴弧AC=弧BC∴角MOC=角NOC(2)OC=OC(3)(1)(2)(3)得△CMO≌△

AB是圆O的直径AB是圆O的直径,弦DE垂直平分半径OA,C为垂足,弦DF与半径OB相交于点P,连接EF,EO,若DE=

首先画图(都不给张图真是的)(1)连接DOCO=1/2OD,OD^2=CD^2+CO^2(1:2:√3知道么,因为CD是√3所以OD是2)那么半径就是2了(2)哪来的阴影?再问:忘插图片了,现在插好了

OA,OB是圆O的俩条半径且OA⊥OB,点C是OB延长线上任意一点,过点C作CD切圆O于点D,连AD交OC于点E求证:C

(1)如图(1),OA、OB是⊙O的两条半径,且OA⊥OB,点C是OB延长线上任意一点,过点C作CD切⊙O于点D,连接AD交OC于点E.求证:CD=CE;(2)若将图(2)中的半径OB所在直线向上平行

如图OA,OB是圆O的半径,C是弧AB上的点,CD垂直于OA于D,CE垂直于OB于E,且CD=CE.求证:点C是弧AB的

∵CD垂直OA于DCE垂直OB于E∠OEC=∠DOC∵OC=OC,CD=CE∴△EOC和△DOC全等(HL)∴∠AOC=∠BOC∴弧CA=BC(圆心角定义的推论)∴C是弧AB中点.

如图,OA、OB是⊙O的半径,且OA垂直OB,操作:在OB上取任意一点P,AP的延长线交⊙O于C,过点C作⊙O的切线CD

DC=DP.连接OC.因为CD是圆的切线,所以OC⊥CD,即∠DCP+∠ACO=90°又OA⊥OB,有∠A+∠APO=90°.OA=OC,有∠A=∠OCP,因此∠DCP=∠APO=∠DPC,于是DC=

如图,已知OA、OB是圆O的两条半径,C、D分别在OA、OB上且AD=BD求证AD=BD

证明:∵AC=BD,OAOB∴OC=OD∵∠A=∠A∴△OAD≌△OBC∴AD=BC

已知OA和OB是圆O的两条半径,且OA⊥OB,弦AD交OB于P,过点D的切线交OB的延长线于C,若PD=DC,则∠A=

延长AO交⊙O于E,连结DO、DE.∵PD=DC,∴∠C=∠CPD,∴∠CDP=180°-2∠C.∵DC切⊙O于D,∴∠CDO=90°,∴∠CDP+∠ODA=90°,∴180°-2∠C+∠OCA=90

如图,OA,OB是 圆O 的两条互相垂直的半径,C是弧AB上的一点.

过点C作CD⊥OB交OB于点E,交○O于点D,连接AD交OB于点P,交OC于点E.连接PC∵∠COB=30°∴∠C=60°∵∠D=∠AOC/2=60°/2=30°∴∠AEO=90°∴∠A=30°∴OE

图所示是圆O的部分图形,OA.OB是圆O的两条互相垂直的半径,点M是弦AB的中点,过点M做MC//OA,交弧AB于点C.

过M、C作ME⊥AO于E,CF⊥AO于F,连OC∵M为AB的中点,∴ME=1/2OB,易证MEFC为矩形∴CF=1/2OB=1/2OC,∠COF=30°,∴弧AC=1/3弧AB

如图,在圆O中,半径OA垂直于OB,C是OB的延长线上一点,AC交圆O于点D,求证:角DOA=2角C

证明:过圆心O作OE⊥AC于E∵OA=OD,OE⊥AC∴∠AOE=∠DOE=∠DOA/2(三线合一),∠A+∠AOE=90∵OA⊥OB∴∠A+∠C=90∴∠AOE=∠C∴∠DOA/2=∠C∴∠DOA=