设fx等于e^-x/a

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 13:48:26
设fx等于e^-x/a
设fx是定义在R上的奇函数,当x小于等于0时,fx=2x²-x,求fx的解析式

fx=-2x^2-x再问:为啥再问:就因为是奇函数再答:令x小于0,则fx等于负的f(-x),然后将那个解析式中的x换成-x来算再问:整体是个负值?再答:对再问:答案是-1?

已知函数f(x)=e^x-ax-1(a>0..e为自然对数的底数)求函数fx的最小值.若fx大于等于0对任意的x属于R恒

(1)f'(x)=e^x-a,令f'(x)=0,得e^x=a,x=lna易知,当x0,从而f(x)的最小值为f(lna)=a-alna-1(2)f(x)≥0恒成立,等价于最小值f(lna)≥0,即a-

设函数fx=e的x次方-1-x-ax 若当x≥0,f(x)≥0,求a 的取值范围

f(x)=e^x-1-x-axf'(x)=e^x-(a+1)若a+1≤0,也即a≤-1,则f'(x)>0,f(x)严格单增,故只需f(0)≥0,1-1-(a+1)*0≥0,得0≥0恒成立.故a≤-1时

设函数fx=(x+1)In(x+1),若对所有的x大于等于0,都有fx大于等于ax恒成立,求实数a的取值范围

(x+1)ln(x+1)>=axa=0所以g(x)为增函数又g(0)=0所以g(x)>=0所以f'(x)=g(x)/x^2>=0所以f(x)为增函数f(x)min=lim(x->0)((x+1)ln(

设函数fx=ax+cosx,x[o,π],设函数fx小于等于1+sinx,求a的取值范围

AX+COSX小于等于1+SINXCOSX-SINX小于等于1-AX根号2*COS(X+PAI/4)小于等于1-AX由Y=根号2*COS(X+PAI/4)和Y=1-AX的图像可直接判定,A小于等于0画

设随机变量X的概率密度为fX(x)=(1/2)*e^(-|x|),(-∞

楼主大大,这显然是概率论和数理统计的问题,怎么会是现行代数呢?解法如下:概率密度函数f(x)=1/2*e^(-|x|),说明一下,由于积分号打不出来,暂时用∫代表,∫[a,b]中括号内分别表示积分的上

设函数fx=(ax+1-a)e的x次方,(1)求函数fx的单调区间;(2)若fx≥0在区间【1,2】上恒成立,求实数a的

1f'(x)=ae^x+(ax+1-a)e^x=(ax+1)e^x当a=0时,f'(x)=e^x>恒成立∴f(x)的单调递增区间为(-∞,+∞)当a>0时,由f'(x)>0得ax+1>0∴x>-1/a

设函数fx等于alnx加2分之ax平方减2x.a属于r.当a等于1时、求函数fx在区间[1,e]上最大值

f(x)=alnx+(ax^2)/2-2x当a=1时,f(x)=lnx+x^2/2-2xf'(x)=1/x+x-1f''(x)=1-1/x^2即1-1/x^2即x=1或x=-1时,f(x)存在拐点,即

设函数fx=e的x次方+a(x-2),若fx大于等于0对一切x属于R恒成立,则a的取值范围是

主要讨论f(x)的单调性求导f(x)'=e^x+a分类讨论1.a>=0时f(x)'恒大于0,于是f(x)单调递增,结合fx大于等于0对一切x属于R恒成立,知limf(x)[x-->-无穷]>=0,于是

设随机变量x概率密度如下:fx(x)={1-a^3/x^3 x>=a 0 x0求E(x)[求数学期望]

E(x)=∫(积分上限正无穷,积分下限为a)x*[1-(a/x)^3]dx=(1/2*x^2+a^3*x^-1)|(上限为正无穷,下限为a)=+∞+0-1/2*a^2-a^2=+∞-3/2*a^2因为

设函数fx=a(x-1/x)-lnx

先得切点(1,0) 在对f(x)求导f'(x)=(x^2-x+1)/x^2  得斜率k=1l :y=x-1求导得f'(x)=(ax^2-x+a)

设函数Fx等于x的立方减六x加5,求Fx的单调区间和极值

F(x)=x^3-6x+5F'(x)=3x^2-6=3(x+√2)(x-√2)x∈(-∞,-√2)时单调增x∈(-√2,√2)时单调减x∈(√2,+∞)时单调增x=-√2时有极大值F(-√2)=4√2

设函数fx=xe^x,gx=ax^2+x,若x>等于0时.恒有fx>等于gx.求a的取值范围

f'=e^x+xe^x,g'=2ax+1f'-g'=e^x-1+xe^x-2axx>等于0时.恒有fx>等于gxf'-g'>0,解得a>0

设函数fx=e的x次方—1—x—ax的平方 若a=0,求fx的极值

a=0,f(x)=e^x-1-xf'(x)=e^x-1=0e^x=1x=0x>0时f'(x)>0,x

设函数fx=x(e的x次方-1)-ax² 若当x≥0时,fx≥0,求a的取值范围

首先把式子列出来:f(x)=x(e^x-1)-ax^2(应该是这个)然后考虑x=0时,f(x)=0,(那么就好办了,只需证明在x大于等于零的时候,f(x)单调递增就行了)接下来,求导f'(x)=(x+

设函数fx=x(e^x-1)-1/2x^2则函数fx的单调增区间为

fx=x(e^x-1)-1/2x^2f'(x)=e^x-1+x*e^x-x=(1+x)e^x-(1+x)=(x+1)(e^x-1)x+1是增函数e^x-1是增函数令(x+1)(e^x-1)>=0∴x=

设fx等于lg(4-k*2的x次方),求函数fx的定义域

只需(4-k*2的x次方)>0,即4>k*2的x次方对k讨论,若k=0,则,定义域为R若k>0则变为,4/k>2的x次方两边取对数即为ln(4/k)>xln2即为(ln(4/k))/(ln2)>x若k

设函数fx=x(e^x-1),a属于R,其中e为自然对数的底数,若a=1/2,求fx的单调递增区间

你这个函数里没有出现a啊……f(x)的单调递增区间是:[0,+∞)再问:错了,是函数fx=x(e^x-1)-ax^2再答:哦,好的这样的话,一般的高中方法可能不能用了,应该需要求导:f'(x)=(x+