设F(x,y)是二维随机向量(X,Y)的联合分布函数
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 21:23:09
大学问题,挺有意思的,先求恩,记得是先区分是什么分布,然后求概率分布F(x,y)然后求期望E(x,y),方差D(x,.y),再然后求什么自相关,互相关,(有个记得好像是一般都得0)然后按照协方差公式求
/>(1)由概率和为1可知0.1+0.3+0.1+a+0.2+0.1=1解得a=0.2(2)不好列表,我就单个写吧P(X=0)=0.1+0.2=0.3P(X=1)=0.3+0.2=0.5P(X=2)=
E(xy)=∫xy*f(xy)dxdy
相关系数=0,表示x与y无关正态分布不相关可以推出相互独立N(0,4)N(0,4)那么P{X>0}=0.5再问:我想知道x~N(0,4)y~N(0,4)那么P{X>0}=0.5最后这个0.5怎么出来的
P(X>x,Y>y)=1-【F(x,+∞)+F(+∞,y)-F(x,y)】
(1)1/9(2)5/16(3)5/18
~你好!很高兴为你解答,~如果你认可我的回答,请及时点击【采纳为满意回答】按钮~~手机提问者在客户端右上角评价点“满意”即可.~~你的采纳是我前进的动力~~祝你学习进步!有不明白的可以追问!谢谢!~
f(x,y)=1,0再问:其实这题我主要想问得就是相关系数,而且你的答案里,那个应该是y的绝对值在0蛋1之间再答:f(y)=∫[0,|y|](1)dx=|y|,-1
就是一个积分:1、先确定A=1/9,2,再求P{(X,Y)∈D}=1/9∫∫((6-x-y)dxdy=8/27
∫∫(-∞,+∞)p(x,y)dxdy=Aπ²=1A=1/π²(2)P{(X,Y)∈D}=∫∫p(x,y)dxdy,积分区域为D=∫(0,1)∫(0,x)p(x,y)dydx,=1
再问:��ã�лл��Ļش����м������⡣ʲôʱ��f(x,y)�ɷ�������أ���Ե�����ܶȵĹ�ʽΪfX(x)=��f(x,y)dy,�Ƕ�y��֣�Ϊʲô��������dx�
Var(X)=Var(Y)=1/3. 具体过程见下图.
x^2≤x这个条件是绝对要满足的y的取值受制于x的取值这里x范围是01所以积分y的范围是x^2到xx积分范围是01对概率函数积分得C=6再问:如果改为x^2
设二维随机向量(X;Y)的联合分布函数为:F(x,y)=A(B的联合概率密度函数关于X和Y的边缘(x,y)双重积分为1且利用还原
在区域内积分得1,就能求出C了,f能分解为fx*fy,因此x,y独立
看不到题呀,杯具再问:设F(x,y)是二维随机向量(X,Y)的联合分布函数,Fx(x)和Fy(y)分别是X和Y的分布函数,求证F(x,y)>=1-[1-Fx(x)][1-Fy(y)]图片没传成功。。再
f_X (x)={█( (2√(1-x^2 ))/π , &  
图就不画了.在直角坐标系中,G表示的区域为x轴、y轴、x=1、y=1围成的正方形区域,面积=1P表示的区域为x轴、y轴、直线y=-x+1围成的三角形区域,面积=1/2P{x+y
看不见你的图,我举个例子给你吧y值1234x值00.10.020.010.0410.20.040.020.0320.110.060.030.0730.090.080.040.06P(X=0)就是把第一