设f(x)在点x=0的某一邻域内具有二阶连续导数

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 18:46:14
设f(x)在点x=0的某一邻域内具有二阶连续导数
级数收敛证明设f(x)在x=0的某一邻域内具有二阶连续导数,x->0时,f(x)/x->0,证明级数∑f(1/n)绝对收

取a>0使得f(x)在[0,a]上有二阶连续导数,则由连续函数的有界性知存在M>0使得|f''(x)|

高数函数的极限定义函数极限定义:设函数f(x)在点x.的某一去心邻域内有定义,如果存在常数A,对于任意给定的正数ε(无论

你看函数极限的定义:“对于任意给定的正数ε(无论它多么小),总存在正数δ,使得当x满足不等式0

设f(x)在点x=0的某一邻域内具有二阶连续导数,且limx→0

∵f(x)在点x=0的某一邻域内具有二阶连续导数,即f(x),f'(x),f''(x)在x=0的某一邻域均连续且:limx→0f(x)x=0∴f(x)=f(0)=0limx→0f(x)−f(0)x=0

设f(x)在x=x0的邻域内有二阶连续导数,求

分子上第1个负号应为正号,否则极限不存在

微积分一道题设f(x)在x=0的某个邻域内连续,且有limx→0 f(x)/xsinx=1,验证x=0为f(x)的驻点且

∵limx→0f(x)/xsinx=1∴limx→0f(x)/x²=1∴limx→0f(x)=0用罗比塔法则∴limx→0f'(x)/2x=1∴limx→0f'(x)=0∴x=0是驻点再用罗

设函数f(x)在点x=0的邻域内连续,极限A=lim((3f(x)-2)/x+ln(1+x)/x^2))其中x趋向于0,

通分并以x为分母,知分母趋于零分子必趋于零,得limx->0[3f(x)-2+ln(x+1)/x]=0,得limx->0f(x)=1/3=f(0)(连续)

"函数f(x)在点x.的某一去心邻域内有定义"是什么意思

有定义就是指这个函数有具体的表达式,也可以是抽象的形式,也可以是具体的形式,总是有定义就是你要规定这个函数到底是什么样的函数.当然它必须满足函数的定义.

设二元函数z=f(x,y)在点P(0,1)的某邻域内可微,且f(x,y+1)=1+2x+3y+0(p),其中p=√(x^

有点难,以前学过的,现在好像忘记了.建议你看一看课本例题.

设函数f(X)在x=0点的某邻域内可导,f(0)=0 f'(0)=1/2 ,求lim(x->0)f(2x)/x

f(2x)/x=2[f(2x)-f(0)]/(2x-0)取极限得,lim(x→0)f(2x)/x=2f'(0)=1注意:右边就是f(x)在x=0处的导数

设f(x)在x.的某一邻域内有定义,且x→x.时,[f(x)-f(x.)]/(x-x.)²=A,A>0,A为常

B,因为,[f(x)-f(x.)]/(x-x.)²=A,A>0,所以f(x)的导数与dx同号,所以在x0左右分别为单调减与单调增,存在极小值.

证明:若函数f(x)在点x0连续且f(xo)不等于0,则存在x0的某一邻域U(x0),当x属于U(x0)时,f(x)不等

设f(xo)=a≠0.∵函数f(x)在点x0连续,∴对于ε=|a|/2>0存在δ>0当x∈﹙x0-δ,x0+δ﹚=U(x0)时|f(x)-f(xo)|<ε.即x∈U(x0)-|a|/2<f(x)-a<

设f(x)在点x=0的某一邻域内具有二阶连续导数,且limx→0f(x)x=0,证明级数∞n=1f(1n)绝对收敛

∵f(x)在点x=0的某一邻域内具有二阶连续导数,即f(x),f'(x),f''(x)在x=0的某一邻域均连续且:limx→0f(x)x=0∴f(x)=f(0)=0limx→0f(x)?f(0)x=0

设函数y=f(x)在点x0的某一邻域内有定义,证明:f'(x0)=A的充分必要条件是f_'(x0)=f+'(x0)=A

若limf'(x0)=A,则lim[x→x0][f(x)-f(x0)]/(x-x0)=A因此lim[x→x0+][f(x)-f(x0)]/(x-x0)=Alim[x→x0-][f(x)-f(x0)]/

先看几个定义:(1)连续点的定义是:如果函数在某一邻域内有定义,且x->x.时limf(x)=f(x.),就称x.为f(

不可导的函数有一定的特点,一般是在某个点处不可导.而且初等函数都可导加绝对值的函数可能出现不可导的点,比如y=|x|这个函数,在x=0处,出现了一个“尖点”,在此点函数必不可导可以用导数的定义式求在x

一道偏微分的数学题 设f(x,y)= | x-y | φ(x,y),其中φ(x,y)在点(0,0)的邻域内连续,试问φ(

,1.f(0,0)=0fx(0,0)=lim(x趋于0)[f(x,0)-f(0,0)]/x=lim|x|φ(x,0)/xfy(0,0)=lim(y趋于0)[f(0,y)-f(0,0)]/y=lim|y

设f(x)在x=0的某一邻域内二阶可导,且lim(x-->0)f(x)/x=0,f''(0)=2.求lim(x-->0)

因f(x)在x=0处二阶可导从而连续f'(x)=lim(x-->0){[f(x)-f(0)]/x}=lim(x-->0){-f(0)/x},x-->0,f'(x)有意义(二阶可导从而连续),除非f(0