设F(X)在X=X0处可导,则limf(a x)-f(a-x) x

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 10:43:29
设F(X)在X=X0处可导,则limf(a x)-f(a-x) x
设函数f(x)在x0处可导,则(f²(x)-f²(x0)/(x-x0)当x→x0时的极限

lim(f²(x)-f²(x0)/(x-x0)因式分解为:=lim(f(x)+f(x0))(f(x)-f(x0))/(x-x0)拆成两项=lim[(f(x)+f(x0)]*lim[

f(x)在x0处可导,且f'(x0)=2,则当x无限趋近于0时,[f(x0+x)-f(x0-3x)]/x=

[f(x0+x)-f(x0-3x)]/x=f(x0+x)/x-f(x0-3x)/x=f(x0+x)/x+3*f(x0-3x)/(-3x)=2+3*2=8主要是把方程给化简,需要仔细看书里极限的定义就很

设函数f(x)在点x0处可导,且f'(x0)=2,则lim(h→0)[f(x0-h/2)-f(x0)]/h等于多少

lim(h→0)[f(x0-h/2)-f(x0)]/h=lim(h→0)[f(x0-h/2)-f(x0)]/(-h/2)*(-1/2)=f'(x0)*(-1/2)=2*(-1/2)=-1

设函数f(x)在x=x0处可导,则lim(h>0)[f(x0)-f(x0-2h)]/h

lim(h>0)[f(x0)-f(x0-2h)]/h=lim(h>0)2*[f(x0)-f(x0-2h)]/2h=2*lim(h>0)[f(x0)-f(x0-2h)]/2h=2f'(x0)

设函数f(x)在x0处可导,则lim(x趋向于x0)(f((x+xo)/2))-f(x0))/x-xo=?

lim(x趋向于x0)(f((x+xo)/2))-f(x0))/x-xo设(x+xo)/2=t,则x=2t-xo,当x趋向xo时,显然t趋向xo=lim[f(t)-f(xo)]/(2t-2xo)且t趋

设函数f(x)在x=x0处可导,则limh→0f(x0+h)−f(x0)h(  )

∵函数f(x)在x=x0处可导,∴可得f′(x0)=limh→0f(x0+h)−f(x0)h,∴此极限仅与x0有关而与h无关,故选B.

设f(x)在x0的某邻域内有二阶导数,且f(x0)=0,f'(x0)≠0,f''(x0)=0,则一定有

取极值的充分条件就是,f(x)在x0的某邻域上一阶可导,在x0处二阶可导,且f'(x0)=0,f"(x0)≠0因此这里一阶导数不为0,而且此邻域有二阶导数,所以x0一定不是极值点而拐点则是,某点使函数

设函数f(x)在x0处可导,则lim△x→0f(x0-△x)-f(x0)△x等于(  )

lim△x→0f(x0-△x)-f(x0)△x=-lim△x→0f(x0-△x)-f(x0) -△x=-f′(x0),故选C.

若f(x)在x=x0处可导,则lim {x趋近x0} f[(x)-f(x0)] 等于?

若f(x)在x=x0处可导,表明f(x)在x=x0处是连续的(函数的连续性在极限运算中很重要),x趋近x0时,f(x)趋近f(x0)],lim{x趋近x0}f[(x)-f(x0)]等于0,答案不一定正

高的数学导数的应用1.设函数f(x)在x0处可导,且f'(x0)=2,则当@x=x-x0趋近0时,f(x)在x0处的微分

我会第二题.f(x)为偶函数,x0时,f(x)增,则f'(x)>0.因为f(x)只是先减后增,并没有过多的弯曲,所以一阶导的图像是一条递增的且通过X轴的线(不管曲直啊),二阶导是一阶导的导函数,所以二

设Δy=f(x0+Δx)-f(x0)且函数f(x)在x=x0处可导,则必有()

A.因为在x0处可导所以Δy/Δx在Δx->0时有极限.所以Δy的极限必须是0.否则Δy/Δx的极限就是无穷,不可导了.

设函数y=f(x)在x0处可导,且f'(x0)不等于0,则lim在△x趋于0时(△y -dy)/△x=?

△x→0时(△y-dy)/△x=△y/△x-dy/△x→f'(x0)-f'(x0)=0.

设X0是f(x)=(e^x-e^-x)/2的最小值,则曲线在点(X0,f(X0))处的切线方程为

题目明显有问题!f(x)=(e^x-e^(-x))/2没有极值点;其一阶导函数:f'(x)=(e^x+e^(-x))/2>0拐点(0,0),拐点切线斜率为1;导函数f'(x)=(e^x+e^(-x))

设函数f(x)在点x0连续,且 limf(x)/x-x0=4,则f(x0)= x→x0

很明显f(x0)=0.因为如果f(x0)不等于0,那么此式分母为0,分子是一个不为0的数,那么极限应该是无穷大.而题中极限为4,所以式中分子即limf(x)也应该为0,这样就是一个无穷小比无穷小,极限

设f(x)在点x=x0处可导 且lim 【f(x0+7△x)-f(x0)】/△x=1 求f'(x0)

lim(f(x0+7△x)-f(x0))/△x△x->0=lim7(f(x0+7△x)-f(x0))/△7△x△x->0=7f'(x0)