设F(X)在X=X0处可导,则limf(a x)-f(a-x) x
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 10:43:29
lim(f²(x)-f²(x0)/(x-x0)因式分解为:=lim(f(x)+f(x0))(f(x)-f(x0))/(x-x0)拆成两项=lim[(f(x)+f(x0)]*lim[
[f(x0+x)-f(x0-3x)]/x=f(x0+x)/x-f(x0-3x)/x=f(x0+x)/x+3*f(x0-3x)/(-3x)=2+3*2=8主要是把方程给化简,需要仔细看书里极限的定义就很
lim(h→0)[f(x0-h/2)-f(x0)]/h=lim(h→0)[f(x0-h/2)-f(x0)]/(-h/2)*(-1/2)=f'(x0)*(-1/2)=2*(-1/2)=-1
lim(h>0)[f(x0)-f(x0-2h)]/h=lim(h>0)2*[f(x0)-f(x0-2h)]/2h=2*lim(h>0)[f(x0)-f(x0-2h)]/2h=2f'(x0)
x>0,f'(x)=2x+b;x
lim(x趋向于x0)(f((x+xo)/2))-f(x0))/x-xo设(x+xo)/2=t,则x=2t-xo,当x趋向xo时,显然t趋向xo=lim[f(t)-f(xo)]/(2t-2xo)且t趋
∵函数f(x)在x=x0处可导,∴可得f′(x0)=limh→0f(x0+h)−f(x0)h,∴此极限仅与x0有关而与h无关,故选B.
取极值的充分条件就是,f(x)在x0的某邻域上一阶可导,在x0处二阶可导,且f'(x0)=0,f"(x0)≠0因此这里一阶导数不为0,而且此邻域有二阶导数,所以x0一定不是极值点而拐点则是,某点使函数
lim△x→0f(x0-△x)-f(x0)△x=-lim△x→0f(x0-△x)-f(x0) -△x=-f′(x0),故选C.
若f(x)在x=x0处可导,表明f(x)在x=x0处是连续的(函数的连续性在极限运算中很重要),x趋近x0时,f(x)趋近f(x0)],lim{x趋近x0}f[(x)-f(x0)]等于0,答案不一定正
我会第二题.f(x)为偶函数,x0时,f(x)增,则f'(x)>0.因为f(x)只是先减后增,并没有过多的弯曲,所以一阶导的图像是一条递增的且通过X轴的线(不管曲直啊),二阶导是一阶导的导函数,所以二
A.因为在x0处可导所以Δy/Δx在Δx->0时有极限.所以Δy的极限必须是0.否则Δy/Δx的极限就是无穷,不可导了.
△x→0时(△y-dy)/△x=△y/△x-dy/△x→f'(x0)-f'(x0)=0.
题目明显有问题!f(x)=(e^x-e^(-x))/2没有极值点;其一阶导函数:f'(x)=(e^x+e^(-x))/2>0拐点(0,0),拐点切线斜率为1;导函数f'(x)=(e^x+e^(-x))
很明显f(x0)=0.因为如果f(x0)不等于0,那么此式分母为0,分子是一个不为0的数,那么极限应该是无穷大.而题中极限为4,所以式中分子即limf(x)也应该为0,这样就是一个无穷小比无穷小,极限
lim(f(x0+7△x)-f(x0))/△x△x->0=lim7(f(x0+7△x)-f(x0))/△7△x△x->0=7f'(x0)
很高兴回答你问题,不懂再问!