设f(x)=(n-1)^2x (n^2x^2-1),求f(x)的间断点

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 11:31:15
设f(x)=(n-1)^2x (n^2x^2-1),求f(x)的间断点
1.设f(x)=lg{[1+2^x+3^x+……+(n-1)

解题思路:分离变量,转化为最值问题。利用单调性确定最值;利用等差数列求和公式化简最值。解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http:

设函数f(x)满足f(n+1)={2f(n)+n}/2,(n∈正整数),且f(1)=2,那么f(20)=?

f(n+1)={2f(n)+n}/22f(n+1)=2f(n)+n;f(n+1)=f(n)+n/2;f(n+1)-f(n)=n/2f(n)-f(n-1)=(n-1)/2...f(2)-f(1)=1/2

设f(x)=x(x+1)(x+2)…(x+n) f(x)的n+1阶导数

因为他是n+1阶多项式,所以求导n+1次就是最高阶系数乘(n+1)!就等于(n+1)!

设f(x)=∫(1,x^3)sint/tdt,求∫(0,1)x^2f(x)dx (若f(x)=∫(1,x^n)sint/

显然f(1)=0;由微积分基本定理知道f'(x)=sin(x^3)/x^3*3x^2=3sin(x^3)/x.于是∫(0,1)x^2f(x)dx=∫(0,1)f(x)d(x^3/3)=x^3*f(x)

设f(x)=2x/(1-x^2),求f(x)的n阶导数

这种题的做法都是将f(x)写成两个简单分式的和.分解的方法建议你要掌握,因为不定积分的时候还需要.设2x/(1-x^2)=2x/(1+x)(1-x)=A/(1+x)+B/(1-x),右边通分并比较等式

设f(x)=x/a(x+2),x=f(x)有唯一解,f(x0)=1002,f(x下标n-1)=x下标n,n=1,2,..

/>x=f(x)x=x/a(x+2)ax^2+2ax-x=0[ax+(2a-1)]x=0该方程有唯一解,所以x1=(2a-1)/2a=x2=0(因为0是原方程的解)所以a=1/2所以xn=2x(n-1

设函数f(x)满足f(x)+2f(1/x)=x,求f(x)

f(x)+2f(1/x)=x用1/x代替x得:f(1/x)+2f(x)=1/x两边同时乘2得:2f(1/x)+4f(x)=2/x和原式相减得:3f(x)=2/x-x所以f(x)=2/(3x)-x/3

设f(x)=sin2xcos3x,求f(x)的n阶导数(n=1,2,……)

其中用到和差化积公式和正弦函数n阶求导公式,愚昧不懂的地方可以继续问我

设f(x)=2^x/(2^x+根号2),求f(1/n)+f(2/n)+f(3/n)+.+f(n/n)(n为自然数)

f(1-x)=2^(1-x)/(2^(1-x)+√2)=2/(2+√2*2^x)=√2/(2^x+√2)=>f(x)+f(1-x)=√2/(2^x+√2)+2^x/(2^x+√2)=12(f(1/n)

设f(x)=1/(2^x+√2),计算f(0)+f(1),f(-1)+f(-2)的值,猜想f(-n)+f(n+1)=

f(0)=√2-1,f(1)=(2-√2)/2,f(2)=(4-√2)/14,f(-1)=(4√2-2)/7f(0)+f(1)=√2/2f(-1)+f(2)=√2/2猜想f(-n)+f(n+1)=√/

设函数f(x)=x^2-x=1/2定义域为[n,n+1],n属于N+.求f(x)值域中整数的个数

f(x)=x²-x+1/2=(x-1/2)²+1/4.该二次函数开口向上,对称轴为x=1/2.∵定义域为[n,n+1],n∈N+,定义域在对称轴右侧,是递增的.∴x=n时,函数取到

设f(x)=x/a(x+2), x=f(x)有唯一解,f(x1)=1/1003,f(x)=x下角标n+1(n∈N+).

x/(ax+2a)=xax^2+(2a-1)x=0有唯一解显然x=0是一个解所以ax+2a-1=0的解也是0所以2a-1=0a=1/2f(x)=2x/(x+2)f(x1)=2x1/(x1+2)=1/1

设f(x)=lim(x-->无穷)(n-1)x/nx^2+1,f(X)的间断点是?

设f(x)=lim(n-->无穷)(n-1)x/nx^2+1,f(X)的间断点是?x=0再问:求过程,谢谢再答:分子分母同时除以n再取极限,得结果是x/x^2=1/x,,分母不能为0,故x=0为间断点

设函数f(x)满足f(n+1)=(2f(n)+n)/2 (n为正整数),且f(1)=2,则f(20)=_______

f(n+1)=[2f(n)+n]/2变形2f(n+1)=2f(n)+n2f(n+1)-2f(n)=n把下面这些式子加一起2f(n+1)-2f(n)=n2f(n)-2f(n-1)=n-1……2f(2)-

设X~F(n,n),则P{X>1}=

设Fα(n,n)为F(n,n)分布的上α分位点则P(X>Fα(n,n))=α由题意Fα(n,n)=1由F分布的性质Fα(n,n)=1/F1-α(n,n)因为Fα(n,n)=1所以F1-α(n,n)=1

设f(x)=cos^(nπ+x).sin^(nπ-x)/cos^[(2n+1)π-x](n∈z)求f(π/6)的值

f(x)=cos²xsin²x/cos²x=sin²x所以f(π/6)=(1/2)²=1/4

设函数f(x)=(x-1)^2+blnx,证明ln(1/n +1)>(1/n)^2-(1/n)^3

证明:引入函数g(x)=ln(x+1)-x^2+x^3,x≥0求导g'(x)=1/(1+x)-2x+3x^2=[3x^3+(x-1)^2]/(x+1)>0知g(x)在x>0上单调增加,又g(x)可在x