设f(2x)的一个原函数为cosx,则f(x)=
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 11:59:06
∫f(x)=x²lnxf(x)=lnx*2x+x²*1/x=2xlnx+x∫xf(x)dx=∫x*(2xlnx+x)dx=2∫lnxd(x³/3)+∫x²dx=
f(x)=(tanx/x)'=(sec^2x*x-tanx)/x^2∫xf’(x)dx=∫xdf(x)=xf(x)-∫f(x)dx=xf(x)-tanx/x+C=(sec^2x*x-tanx)/x-t
f(x)=lnx+1f'(x)=1/x
最后答案是2根号x*e^(-x^2),需要过程的话给我邮箱我发给你,编辑的公式粘不过来
f(x)的一个原函数为sinx,则f(x)=(sinx)'=cosx;∫xf'(x)dx=∫xdf(x)=xf(x)-∫f(x)dx=x·cosx-sinx+C
即f(x)=(csc²x)'所以f(x)dx=d(csc²x)所以原式=∫xd(csc²x)=xcsc²x-∫csc²xdx=xcsc²x+
(1)f(x)=2x,∫xf(x)dx=∫2x²dx=2/3x³+C(C为常数)(2)都不对(3)y=(1+e^x)^1/2的导数为e^x/2(1+e^x)^1/2
letxe^(x^2)=∫f(x)dxe^(x^2).[1+2x^2]=f(x)∫xf'(x)dx=∫xdf(x)=xf(x)-∫f(x)dx=xf(x)-xe^(x^2)+C=xe^(x^2).[1
f(x)的一个原函数为sinx/x所以f(x)=(sinx/x)'=[(sinx)'*x-sinx*(x)']/x^2=(xcosx-sinx)/x^2∫xf'(x)dx=∫xdf(x)=xf(x)-
再问:倒数第二行是怎么回事再问:倒数第二行是怎么回事再答:分部积分法而已,产生一个3sinx的积分,跟后面那个相加便是6∫sinxdx再问:真的耶⊙﹏⊙算出来了O(∩_∩)O谢谢再答:太好了
f(x)的一个原函数为cos(2x),=>f(x)=cos'(2x)=-2sin(2x)=>∫f'(x)dx=f(x)+C=-2sin(2x)+C
答:记F(x)=xf(x)F'(x)=f(x)+xf'(x)所以xf'(x)=F'(x)-f(x)所以∫xf'(x)dx=∫[F'(x)-f(x)]dx=∫F'(x)dx-∫f(x)dx=F(x)-s
∫xf`(x)dx=∫xdf(x)=xf(x)-∫f(x)dx=xf(x)-F(x)+C=x*(sinx/x)'-sinx/x+C=x*(xcosx-sinx)/x^2-sinx/x+C=(xcosx
f(x)的一个原函数为e^(-x)f(x)=-e^(-x)f(lnx)=-e^(-lnx)=-1/xf(lnx)/x=-1/x^2∫[f(lnx)/x]dx=1/x+C
即f(x)=(lnx)'=1/x所以原式∫f(x)df(x)=[f(x)]²/2+C=1/(2x²)+C
dF(√x)/dx=F'(√x)/(2√x)又因为F(x)为sinx/x的一个原函数所以有:F'(x)=sinx/x代入就得到了:dF(√x)/dx=F'(√x)/(2√x)=sin(√x)/(√x)
f(x)的一个原函数为sinx/x所以f(x)=(sinx/x)'=(xcosx-sinx)/x²∫f(x)dx=sinx/x+C所以∫xf'(x)dx=∫xdf(x)=xf(x)-∫f(x
因为f(x)的一个原函数为sinxx,所以∫f(x)dx=sinxx+C1,f(x)=(sinxx)′=xcosx−sinxx2.利用分部积分计算可得,∫xf′(x)dx=xf(x)-∫f(x)dx=
分布积分法∫f(x)dx=(e^x)/xf(x)=[(e^x)/x]'=(x-1)(e^x)/x²∫xf'(x)dx=xf(x)+∫f(x)dx=(e^x)(x-1)/x+(e^x)/x=(
f(x)的一个原函数为e^(x^2),所以f(x)=[e^(x^2)]’=2xe^(x^2)]∫f(x)dx=e^(x^2)+c所以∫x*f‘(x)dx=∫xdf(x)=xf(x)-∫f(x)dx=2