设D是抛物线y2=2x与直线x=2所围成的图形,求与y轴旋转体积
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 01:11:41
当直线与x轴不垂直时设直线l:y=k(x-12),代入y2=2x,得:ky2-2y-1=0设A(y212,y1),B(y212x2,y2)∴y1•y2=-1∴kOA•kOB=y1y212•y2y222
将直线y=2x+k带入y^2=4x,∴4x^2+(4k-4)x+k^2=0设两点的横坐标是x1,x2相应的纵坐标为2x1+k,2x2+k∵│AB│=3√5,∴3√5=√[(x1-x2)^2+(y1-y
∵A、B都在抛物线y^2=2px上,∴可设A、B的坐标分别为(A^2/(2p),A)、(B^2/(2p),B).∴AB的斜率=(A-B)/[A^2/(2p)-B^2/(2p)]=2p/(A+B). A
把直线方程与抛物线方程联立得y2=4xy=x-2,消去y得到x2-8x+4=0,利用根与系数的关系得到x1+x2=8,则y1+y2=x1+x2-4=4中点坐标为(x1+x22,y1+y22)=(4,2
y^2=4x得F(1,0),准线是x=-1,即Q(-1,0)设L方程是y=k(x+1),代入得k^2(x^2+2x+1)=4xk^2x^2+(2k^2-4)x+k^2=0判别式=(2k^2-4)^2-
抛物线y2=2x的焦点F(12,0),当AB的斜率不存在时,可得A(12,1),B(12,-1),∴OA•OB=(12,1)•(12,-1)=14-1=-34,结合所给的选项可知应选B,故选B.
利用两个方程求出用b表示的(X1,Y1),(X2,Y2),再利用(绝对值Y1+绝对值Y2)的平方+(绝对值X1-绝对值X2)的平方=(绝对值AB)的平方,就能求出b的值了.计算过程很简单,就是要细心算
解题思路:利用三角形面积公式解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prcedu.com/include/rea
抛物线y2=4x的焦点F(1,0),准线方程为x=-1.设PM是点P到直线l的距离,根据抛物线的定义可得点P到该抛物线准线距离和点P到焦点F的距离相等,故d=PM+PF,故当P、F、M三点共线时,d取
焦点为(1,0),可以设直线为y=x-1.联立方程组:y^2=4x和y=x-1,得到一个关于x的一元二次方程:x2-6x+1=0.可以得到x1+x2=6,x1×x2=1.OA×向量OB=x1×x2+y
(1)由条件|P1P2|=8,可得2p=8,∴抛物线C的方程为y2=8x;….(4分)(2)直线方程为y=a(x-3)代入y2=8x,∴ay2-8y-24a=0,….(6分)△=64+96a2>0恒成
:(1)抛物线y1=2x2向右平移2个单位,得:y=2(x-2)2=2x2-8x+8;故抛物线y2的解析式为y2=2x2-8x+8.(2)由(1)知:抛物线y2的对称轴为x=2,故P点横坐标为2;当x
∵直线x=t分别与直线y=x、抛物线y=x2-6x+9交于点A、B两点,∴A(t,t),B(t,t2-6t+9),AB=|t-(t2-6t+9)|=|t2-7t+9|,①当△ABP是以点A为直角顶点的
y^2=xx-2y-3=0两式联立解得:y1=3,y2=-1,所以x1=9,x2=1取y=-1,3分别为积分上下限面积=∫(上限3下限-1)(抛物线方程-直线方程)dy=∫(上限3下限-1)(y^2-
抛物线y2=x与直线x-y-2=0方程联解,得两个图象交于点B(1,-1)和A(4,2),得所围成的图形面积为:S=∫102xdx+∫41(x−x+2)dx=92.故抛物线y2=x与直线x-y-2=0
证明:(1)设直线l的方程为x=ay+b∵A(x1,y1),B(x2,y2)在抛物线y^2=x上∴x1=y1^2,x2=y2^2∵A,B也在直线l上∴x1=y1^2=ay1+b,x2=y2^2=ay2
抛物线参数方程为y=t,x=′t22p,设B(t212p,t1),C(t212p,-t1),A(t222p,t2)所以求得AC的直线方程为y-t2=(t2−t1)(x−t222p)t222p−t212
哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈哈