设C为圆周x^2 y^2=2y沿逆时针方向,则曲线积分

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 00:29:27
设C为圆周x^2 y^2=2y沿逆时针方向,则曲线积分
求曲线积分∫根号(x^2+y^2)ds,其中L为圆周x^2+y^2=-2y

http://zhidao.baidu.com/question/1894230337967359940.html?oldq=1那天我答得一道题,跟这个非常非常像,你比着做吧.

计算I=∮1/x*arctan(y/x)dx+2/y*arctan(x/y)dy,L为圆周x^2+y^2=1,x^2+y

首先由格林公式得∮Pdx+Qdy=∫∫(Q'(x)-P'(y))dxdy然后化为极坐标的形式积分就可以出来了!我也是新手,一些数学符号弄不出来,希望你能看懂,当然高数的内容还是要多看课本,仔细比较,多

设集合A={(X,y)/2x+y=6},B={(x,y)/3x+2y=4}满足C含于(A∩B)的集合C的个数为_____

集合A={(X,y)/2x+y=6},B={(x,y)/3x+2y=4}满足C含于(A∩B)的集合C的个数为_2____AnB={(x,y)|(8,-10)}所以,集合C={(8,-10)}和空集.共

设二维随机变量(x,y)的联合分布函数为 F(x,y)=a(b+arctan(x/2))(c+arctan(y/3))

给你个思路吧,这个不好打1)由F(无穷,无穷)=1,F(负无穷,负无穷)=0,F(负无穷,y)=0,F(x,负无穷)=0,可以解出abc2)对F(x,y)求x,y的混合偏导数,得出的结果就是f(x,y

设二维随机向量( x ,y )的概率密度函数为 f(x,y)=c,x^2

x^2≤x这个条件是绝对要满足的y的取值受制于x的取值这里x范围是01所以积分y的范围是x^2到xx积分范围是01对概率函数积分得C=6再问:如果改为x^2

求∫L{(x+y)/(x^2+y^2)dx-(x+y)/(x^2+y^2)dy},其中L为圆周x^2+y^2=a^2(按

直接用第二型积分的计算公式.圆的参数方程为x=acost,y=asint,dx=-asintdt,dy=acostdt,逆时针方向对应的t从0到2pi.代入得原积分=积分(从0到2pi)[(acost

设随机变量(X,Y)的联合概率密度为f(x,y)={Ce^-(2x+4y),x>0,y>0;0,其他试确定常数C,

对Ce^-(2x+4y)二次积分,下限和上限都是0到正无穷,结果应该是1.这是因为一个完整分布的和应该是1,算出来的结果是C*(1/8)=1,C=8再问:答案是对的,但是我不会求积分,能把过程写一下吗

求∮[(X+Y)dX/(X^2+Y^2)-(X-Y)dy/(X^2+Y^2)](其中L为圆周x^2+y^2=a^2),逆

P=(x+y)/(x^2+y^2)Q=(y-x)/(x^2+y^2)dQ/dx=(-(x^2+y^2)-2x(y-x))/(x^2+y^2)^2dP/dy=((x^2+y^2)-2y(x+y))/(x

设L为取正向的圆周x²+y²=9,求曲线积分∮(2xy-2y)dx+(x²-4x)dy的值

用参数方程呗,x=3cost,y=3sint,t从0到2π,结果是-18π再问:什么叫做正向的圆周啊再答:就是逆时针,t从0到2π

设PQ为圆周x^2+y^2=1上两动点,且满足于圆内一定点A(0,1/2),使角PAQ为直角,过P Q圆的两条切线的交点

设:PQ中点是M(x,y),则:AM=(1/2)PQ另外,OM²+[(1/2)PQ]²=R²即:OM²+AM²=1(x²+y²)+

设十位为x,个位数字为 y,列方程组 x+y=6,10x+y+18=10y+x x=2,y=4

让根据列出的方程组出一道题目么?一个两位数,十位数字与个位数字的和为16.交换十位数字和个位数字所得的新数比原数打18求这个两位数

∫C (yx^3+e^y)dx+(xy^3+xe^y-2y)dy,其中C为正向圆周x^2+y^2=a^2

用Green公式:∫CPdx+Qdy=∫∫D(aQ/ax--aP/ay)dxdy=∫∫D(y^3+e^y--x^3--e^y)dxdy=∫∫D(y^3--x^3)dxdy对称性积分区域D关于x,y轴都

设Z=X+Y,其中X,Y满足X+2Y>=0,X-Y

(线性规划)由条件当X=Y=3时有最大值Z=6即得K=3再由X+2Y>=0很容易求得Z最小值-3

联合概率密度函数设随机向量(X,Y)的分布函数为F(x,y)=A(B+arctan x/2)(C+arctan y/3)

F(-∞,y)=A*(B-π/2)(C+arctany/3)=0,B=π/2F(x,-∞)=A*(B+arctanx/2)(C-π/2)=0,C=π/2F(+∞,+∞)=A(B+π/2)(C+π/2)

设L为取正向的圆周x²+y²=4,则曲线积分∫L(x²+y)dx+(x-y²)d

用格林公式将一个封闭曲线上的线积分化为在此封闭区域内的面积分∫L(x²+y)dx+(x-y²)dy=(在曲线L围成的封闭区域上积分)∫∫{[∂(x-y²)/&

设L为取正向圆周的X^2+Y^2=1,求∫(-y)dx+xdy

设P(x,y)=-yQ(x,y)=x那么αP/αy=-1αQ/αx=1根据格林公式(不会自己去查)原式=∫∫[(αQ/αx)-(αP/αy)]dxdy=∫∫2dxdy=2π

设L为逆时针方向的圆周x^2y^2=9则曲线积分∫L(e^(x-y)+xy)dx+(siny+e^(x-y))dy=?

既然是求闭曲线积分,就用格林公式化为二重积分那个负号应该是题目打印有误,如果是负的,曲线积分转化为二重积分∫∫(-x)dxdy由于积分区域是圆x^2+y^2=9,关于y轴对称,所以∫∫(-x)dxdy