设b是方阵A的特征值,当A可逆时,证明
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 23:52:53
矩阵A的特征值满足特征方程|λE-A|=0,有已知条件特征值是1,-1,2.可以得到|E-A|=0,|-E-A|=0,|2E-A|=0,因为矩阵可逆的充要条件是它的行列式不为零,所以E-A,-E-A,
设A的特征值为λ,则A+E的特征值为λ+1(这儿使用的是公式:f(A)的特征值为f(λ))从而因为A的特征值为0,1,……,n-1,所以A+E的特征值为1,2,……,n,从而|A+E|=n!不等于0,
设3阶方阵A的特征值为1,-1,2,则下列矩阵中的特征值为A.E-A:1-1,1-(-1),1-2,即E-A特征值为0,2,-1B.-E-A:-1-1,-1-(-1),-1-2,即-E-A特征值为-2
1.因为B^-1A=B^-1(AB^-1)B所以B^-1A与AB^-1相似所以它们有相同的特征值.2.设a为A的特征值则a^2-1是A^2-E的特征值因为A^2-E=0,零矩阵的特征值只能是0所以a^
题目没写全吧再问:则KA-1的特征值为,不好意思,谢谢您了再答:结果应该是2K-1过程设x是特征值2的特征向量Ax=2x则kAx=2kx则kAx-x=2kx-x即(kA-1)x=(2k-1)x所以,k
若λ是A的特征值,且A可逆则1/λ是A^-1的特征值(定理)所以1-1/λ是E-A^-1的特征值再问:为什么1-1/λ是E-A^-1的特征值呢?再答:E-A^-1是A^-1的多项式有定理:f(λ)是f
设f(x)=(x-b_1)(x-b_2).(x-b_n)即b_1,b_2,...,b_n是B特征根.则f(A)=(A-b_1E).....(A-b_nE)det(f(A))=det(A-b_1E)..
B(B^{-1}A)B^{-1}=AB^{-1},则B^{-1}A与AB^{-1}相似,从而有相同的特征值.
(用c代替lambda)c是特征值,则存在非零向量x使得cx=Ax,于是A^2x=A(Ax)=cAx=c^2x,c^2是A^2特征值A^(-1)x=[A^(-1)(cx)]/c=[A^(-1)(Ax)
(用c代替lambda)c是特征值,则存在非零向量x使得cx=Ax,于是A^2x=A(Ax)=cAx=c^2x,c^2是A^2特征值
给你例子看看A=[1,0;0,0],B=[0,0;0,1]则因为r(A)=r(B)=1,所以A与B等价.但它们的行向量组,列向量组都不等价A的行向量组是(1,0),(0,0)B的行向量组是(0,0),
由于方阵A与B相似,因此A与B的特征值相同所以,B的特征值是1,12,13,而B是三阶的,因此上面三个特征值是B的全体特征值所以,B-1+E的特征值为11+1=2、112+1=3、113+1=4故:|
假设A+E不可逆,则|A+E|=0所以-1是A的一个特征值设ξ是属于-1的一个特征向量则A^2ξ=A(-ξ)=-Aξ=ξ但A^2=A所以A^2ξ=Aξ=-ξ矛盾
AB*(AB)^(-1)=EAB^(-1)=B^(-1)A^(-1)AB*(AB)^(-1)=AB*B^(-1)*A^(-1)=A[B*B^(-1)]A^(-1)=E故:B*B^(-1)不等于0B*B
A正确,行列式为0,矩阵A不可逆B三个特征值,3个特征向量,相似C不同特征值对应的特征向量正交D,R(A)=2,齐次方程解的个数为1个,基础解系就是1个向量!您好,liamqy为您答疑解惑!如果有什么
Ax=axA^mx=A^m-1Ax=aA^m-1x=...=a^mx
因为A的n个特征值互异所以A可对角化,且A相似于对角矩阵diag(a1,...,an)又因为n阶方阵B与A有相同的特征值所以B也可对角化,且B相似于对角矩阵diag(a1,...,an)由相似的传递性
由A有n个不同的特征值,每个特征值对应的特征空间维数为1,且所有特征向量线性无关.设a为A的特征值,x为对应的非零特征向量,则ABx=BAx=B(Ax)=B(ax)=a(Bx),这说明Bx也是A的对应
A.若A或B可逆,则必有AB可逆这个不对,A,B都可逆时,AB才可逆B.若A或B不可逆,则必有AB可逆不对,原因同上C.若A,B均可逆,则必有A+B可逆不对,E和-E都可逆,和是0矩阵不可逆D.若A.
设x是r对应的非零特征向量,则有Ax=rx,上式两边同左乘A,则AAx=rAx=rrx,由此可以得到r^2是A^2的特征值