设bn等于绝对值求tn

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/23 17:05:24
设bn等于绝对值求tn
数列{Bn}前n项和为Tn,且Tn+0.5Bn=1 求Bn为等比数列

Tn+Bn/2=1Tn=1-Bn/2T(n-1)=1-B(n-1)/2Tn-T(n-1)=Bn=-Bn/2+B(n-1)/22Bn=-Bn+B(n-1)3Bn=B(n-1)Bn/B(n-1)=1/3n

an等差数列 bn前n项和sn满足sn=3(bn-1)/2 且a2=b1 a5=b2 ⑴求an bn通项 ⑵设tn为数列

1.Sn=3/2bn-3/2S(n-1)=3/2b(n-1)-3/2bn=Sn-S(n-1)=3/2bn-3/2b(n-1)bn=3b(n-1)所以{bn}是等比数列,公比3而b1=S1=3/2b1-

设等差数列an的前n项和为Sn,已知bn=1/Sn,且a3*b3=1/2,S3+S5=21,求bn,bn前n项和Tn.

S3=3a1+3*2*d/2=3a1+3ds5=5a1+5*4*d/2=5a1+10da3*b3=(a1+2d)/S3=(a1+2d)/(3a1+3d)S3+S5=3a1+3d+5a1+10d=8a1

已知数列bn满足bn=b^2n,其前n项和为Tn,求(1-bn)/Tn

n=b^2n,Tn=b^2+b^4+b^6+……+b^2n=b^2n(1-b^2n)/(1-b^2)所以1-bn=1-b^2n所以(1-bn)/Tn=(1-b^2n)/{b^2(1-b^2n)/(1-

已知数列{an}的通项公式an=6n-5,设bn=1/an*an+1,Tn是数列{bn}的前n项和,求Tn

a(n)*a(n+1)=(6n-5)(6n+1)1/[(6n-5)(6n+1)=(1/6)*[1/(6n-5)-1/(6n+1)]Tn=(1/6)*[1-1/7+1/7-1/13+1/13-1/19+

若数列an的通项an=2n-1设数列bn的通项bn=1+1/an记Tn是数列bn前n项积(1)求T1,T2,T3的值(2

(1)bn=2n/(2n-1)T1=2,T2=8/3,T3=16/5(2)注意:2k/(2k-1)=1+1/(2k-1)>1+1/2k=(2k+1)/2k于是:Tn^2=(2n/(2n-1))(2n/

数列an,满足Sn=n^2+2n+1,设bn=an*2^n,求bn的前n项和Tn

由Sn=n²+2n+1易得a1=4(当n=1)an=2n-1(当n≥2)所以b1=8(当n=1)bn=(2n-1)*2^nTn=8+3*2^2+5*2^3+7*2^4+...+(2n-1)*

数列{an}的前n项和为Sn=3an+2 设bn=n 求数列{an·bn}的和Tn

an=Sn-S(n-1)=3an+2-3a(n-1)-2an=3/2a(n-1)a1=3a1+2a1=-1an=(-1)*(3/2)^(n-1)anbn=-n*(3/2)^(n-1)Tn=-1(3/2

数列bn的前n项和为Tn,6Tn=(3n+1)bn+2,求bn

当n≥2时,有bn=Tn-T(n-1)所以由6Tn=(3n+1)bn+2得6T(n-1)=(3(n-1)+1)b(n-1)+2上两式相减得6(Tn-T(n-1)=(3n+1)bn-(3n-2)b(n-

设bn=3/(anan+1),an=6n-5,tn是数列{bn}的前n项和,求使得Tn

Tn=b1+b2+...+bn=(3/a1a2)+.+3/[ana(n+1)]=3[1/a1a2+1/a2a3+...+1/ana(n+1)]=3[1/(1*7)+1/(7*13)+...+1/(6n

设数列 {bn}的前n项和为Tn,Tn=n^2+n+1,i求数列{bn}的通项公式

n=1时,a1=3n>=2时Tn=n^2+n+1.(1)T(n-1)=(n-1)^2+(n-1)+1.(2)两式相减得an=2n(n>=2)n=1代入,a1=2,不符合综合得n=1,a1=3n>=2,

n*2^n Tn设数列Bn等于N乘以2的N次方,求Bn的和Tn将Tn的通向公式列出

Tn=2+2*4+3*8+4*16+.+(n-1)*(2的n-1次方)+n*(2的n次方)2*Tn=4+2*8+3*16+.+(n-1)*(2的n次方)+n*(2的n+1次方)用二式减一式得Tn=n*

设bn=(an+1/an)^2求数列bn的前n项和Tn

a(n)=aq^(n-1),a>0,q>0.a+aq=a(1)+a(2)=2[1/a(1)+1/a(2)]=2[1/a+1/(aq)]=2(q+1)/(aq),a=2/(aq),q=2/a^2,a(n

an=3*2^(n-1),设bn=n/an求数列bn的前n项和Tn

将an带入bn得bn=n/3*2^(n-1);将Tn展开为Tn=1/3(1+2/2+3/2^2+4/2^3+...+n/2^(n-1))---此为1式然后等是两边同时1/2*Tn=1/3(1/2+2/

已知数列an=4n-2和bn=2/4^(n-1),设Cn=an/bn,求数列{Cn}的前n项和Tn

Cn=an/bn=(4n-2)/[2/4^(n-1)]=(n-1)4^(n-1)Tn=0+1*4+2*4^2+3*4^3+.+(n-1)4^(n-1)4Tn=1*4^2+2*4^3+3*4^4……(n

已知数列{bn}中,点(bn,Tn)在直线y=-1/2x+1上,Tn是数列{bn}的前n项和,求Tn

因为点(bn,Tn)在直线y=-1/2x+1上所以Tn=-1/2bn+1即2Tn=-bn+2因为Tn-T(n-1)=bn所以2Tn=-Tn+T(n-1)+2即3Tn=T(n-1)+2等式两侧都减3即3

设bn=3/(anan+1),an=2n-51,tn是数列{bn}的前n项和,求使得Tn

Tn=b1+b2+...+bn=(3/a1a2)+.+3/[ana(n+1)]=3[1/a1a2+1/a2a3+...+1/ana(n+1)]=3[1/(1*7)+1/(7*13)+...+1/(6n

正项等差数列an,a5=8,a4*a6=60,求an和sn,设数列bn满足bn=1/sn,求Tn

a4+a6=2a5=16,a4a6=60,解得a4=6,a6=10,2d=a6-a4=4,d=2,an=a4+(n-4)x2=2n-2.sn=n(n-1)/2*2=n(n-1)1/sn=1/n(n-1

\x0c已知数列{an}的前n项和Sn等于n的平方加2n,一问:求数列通项公式an,第二问:设2bn等于an减1,且Tn

(1)an=sn-s(n-1)=n^2+2n-(n-1)^2-2(n-1)=2n+1(2)bn=(2n+1-1)/2=nTn=(1-1/2)+(1/2-1/3)+(1/3-1/4)+...+(1/n-