设bn的和为收敛的正项级数,an-a(n-1)收敛,证明anbn绝对收敛

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/23 16:28:51
设bn的和为收敛的正项级数,an-a(n-1)收敛,证明anbn绝对收敛
若a(n)为单调有界的正项数列,证明无穷级数∑ a(n+1)/a(n)-a(n)/a(n+1)收敛

因为a(n)单调有界、正,a(n)->a>=0.1、如果a=0,结果不一定正确.例如a(n)=1/n,级数的通项=n/(n+1)-(n+1)/n=-(2n+1)/(n(n+1)),这个不收敛.2、如果

级数的一致收敛和绝对收敛怎么证明

级数的一致收敛用魏尔斯特拉斯判别法证明.级数的绝对收敛即判断级数每项加绝对值号形成的正项级数的敛散性,可根据比较判别法,比值判别法,根值判别法等进行证明.

若级数∑an^2和∑bn^2都收敛,求证:∑an的绝对值/n收敛

用比较判别法证明.经济数学团队帮你解答.请及时评价.

若级数an发散,级数(an+bn)收敛则级数bn为什么是发散的?

如:an=n²,发散的,an+bn=1/n,是收敛的,此时bn=-n²+(1/n)还是发散的.

设级数∑an、∑bn均收敛,则它们的柯西乘积是否收敛?

不一定,只有当级数an,bn都是正项级数级数时柯西乘积才收敛如果an=[(-1)^n]/√n,bn=2*[(-1)^n]/√nan*bn=2/n,是发散的再问:∑an=∑[(-1)^n]/√n,∑bn

设两个级数都收敛,证明两个级数和的平方也收敛

an,bn收敛知an->0,bn->0an再问:但这不是正项级数再答:和正项级数有什么关系?你哪没看懂再问:an的平方怎么收敛的再答:老师给了个反例反例a_n=b_n=(-1)^n/n^0.1,刚才默

【无穷级数】正项级数收敛的证明

用比较定理呗,构造一个新级数,b_{2n-1}=0,b_{2n}=a_{2n}.于是∑b_n被收敛级数∑a_n所界定,自然也收敛

正项级数 an 收敛 bn小于等于an 则级数 bn 收敛 怎么证明?

这个是定理啊,大收敛推出小收敛,基本上不用证明.如果非要证也很简单,写一写定义就可以了.再问:老师问我们为什么--我该怎么说求解~再答:你是什么专业的?用e-N定理说一下就出来了。对任意e>0存在N,

级数的绝对收敛

答案a>1由于a>0,故1+a^n>0.加绝对值无所谓①01通项极限为0.用根值判别法,对通项1/(1+a^n)开n次方,结果是1/a,满足收敛条件,收敛半径是a.故答案就是a>1这是我自己的方法,这

关于正项级数收敛的证明.

我来上个图.再答:再问:原来是用基本不等式,谢谢!再答:不客气

高数,级数,正项级数正项级数收敛的充分必要条件是他的部分和有界,这里为什么不说是部分和有极限呢

极限是指趋向无穷的情况,这个概念是无限的.而部分和是指其中一部分的和,这个概念是有限的.有界,是一个有限的表达方式有限的概念要用有限的表达方式去表达

一道关于级数绝对收敛和条件收敛的题目

第二步用的是比较审敛法,和P-级数的结论再问:比较审敛法是什么再答:正项级数审敛的一种最基本的方法:形象的说:大收则小收,小散则大散

一个绝对收敛级数和一个条件收敛级数的和是什么级数

只可能条件收敛an绝对收敛,bn条件收敛an+bn=cn如果cn绝对收敛,那么bn=cn-an绝对收敛,矛盾

绝对收敛和条件收敛我想知道我在求某级数是为绝对收敛还是条件收敛的时候,是先求绝对收敛么?如果它发散,再看原级数是否收敛.

判断一个级数的收敛性时首先看它是否绝对收敛(特别是交错级数),若绝对收敛则原级数收敛,否则…你的判断顺利正确.判断绝对收敛的方法:将原级数加上绝对值,再根据其级数特点用相应的方法(如比较法,比值法,根

设An>0,级数An收敛,Bn=1-ln(1+An)/An,证明级数Bn收敛

再答:如果你认可我的回答,敬请及时采纳,在右上角点击“采纳回答”即可。再问:能不能再帮我解决几个问题?再问:再答:你发提问吧,我看到会解答的再问:第六题和第七题,很急啊,再答:傅里叶啊,计算量太大了再

一个级数∑An收敛,请问它的偶数项级数∑A(2n)和奇数项级数∑A(2n+1)是否还收敛?

分情况一,正项级数则收敛,简单证明下设∑An=k则an必然有界an中m项和为∑bm

数列bn中,bn=(2n+1)+a^n(a为正的常数)求数列bn的前n项和

a=1时,b(1)+b(2)+...+b(n)=2[1+2+...+n]+n+n=n(n+1)+2n=n(n+3).a不为1时,b(1)+b(2)+...+b(n)=2[1+2+...+n]+n+a[