设bn=(更号下3 3)^an 5,cn=
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/23 17:19:38
答案啊这样的,我用照片给你发过去
Tn=1/3+3/9+5/27+.+(2n-1)/3^n-----------(1)(1)×1/31/3Tn=1/9+3/27+5/81+.+(2n-3)/3^n+(2n-1)/3^(n+1)----
解题思路:考查了等差数列、等比数列的通项公式,以及二次函数的最值解题过程:
设A1=2A2=4数列Bn满足:B(n)=A(n+1)-A(n)①B(n+1)=2B(n)+2②B(n+1)=2B(n)+2===>[B(n+1)+2]=2[B(n)+2]可见B(n)+2是公比q=2
2B(n+1)-Bn=2Bn+2-Bn=Bn+2B(n+1)+k=2(Bn+k)k=2所以Bn+2是以B1+2=4为首项2为公比的等比数列(Bn+2)/[B(n-1)+2]=2(n>1)A(n+1)-
Sn=2^n-1=>an=Sn-S(n-1)=2^n-2^(n-1)=2^(n-1)bn=an+1/an=2^(n-1)+1/(2^(n-1))那么有bn-b(n-1)=(2^(n-1)-2^(n-2
你题目写错了,{Bn}的表达式应该是Bn=(A1+2A2+3A3+……+nAn)/(1+2+3+……+n)那啥,第n+1项我直接用B(n+1)来表示,你应该能看懂设Bn公差为dBn=(A1+2A2+3
(1)Bn=3n-2b1+b2+b3+.+b10=10b1+d+2d+.+9d=10+45d=145则d=3因为Bn=b1+(n-1)*d所以Bn=3n-2不知道为什么只能输入99个字,请你再追问一下
a(n+1)=√[bn*b(n+1)]2bn=an+an+12bn=√[bn*b(n-1)]+√[bn*b(n+1)]2√bn=√b(n-1)+√b(n+1)所以数列{√bn}为等差数列√b1=√2(
Sn=1/2(Bn+1/Bn)而S(n-1)=Sn-Bn=1/2(1/Bn-Bn)所以Sn+S(n-1)=1/Bn以及Sn-S(n-1)=BnSn^2-S(n-1)^2=1而S1=a1=1/2(B1+
我不太清楚1/bn*bn+1到底是指bn分之一乘以bn+1,还是(bn*bn+1)分之一an的通式=4*(-2)^(n-1),丨an丨=4*2^(n-1)=2^(n+1)所以bn=log2丨an丨=n
a(1)=S(1)=1,n>1,a(n)=S(n)-S(n-1)=n^2-(n-1)^2=2n-1,a(n)=2n-1,n=1,2,...b(n)=a(n)/3^n=(2n-1)/3^n,n=1,2,
设an的极限为mbn的极限为tlim(3an+4bn)=83m+4t=8lim(6an-bn)=16m-t=1m=4/9t=5/3lim(3an+bn)=3m+t=3第二题若an=(5-3x)^n1)
a(n)=aq^(n-1),a>0,q>0.a+aq=a(1)+a(2)=2[1/a(1)+1/a(2)]=2[1/a+1/(aq)]=2(q+1)/(aq),a=2/(aq),q=2/a^2,a(n
将an带入bn得bn=n/3*2^(n-1);将Tn展开为Tn=1/3(1+2/2+3/2^2+4/2^3+...+n/2^(n-1))---此为1式然后等是两边同时1/2*Tn=1/3(1/2+2/
证明:假设{Cn}为公比为q的等比数列设{an}的公比为q1,{bn}的公比为q2,则Cn=C1*q^(n-1)而C1=a1+b1,故Cn=a1*q^(n-1)+b1*q^(n-1)又因为an=a1*
An=nBn-nBn-1,数列收敛必有极限.对于任意给定的ε1,存在N1使得,A为极限Bn=A+α;对于任意给定的ε2,存在N2使得Bn-1=A+β取N=max{N1,N2}使得An=n{α+(-β)
再答:如果你认可我的回答,敬请及时采纳,在右上角点击“采纳回答”即可。再问:能不能再帮我解决几个问题?再问:再答:你发提问吧,我看到会解答的再问:第六题和第七题,很急啊,再答:傅里叶啊,计算量太大了再
=====啊,等等再问:?怎么了?你会不?再答:马上再问:大哥~麻烦快点吧~急死我了~~~~~~~~~~~再答:①充分性,即:由“{bn}为等比数列”推出“{an}为等差数列”设bn公比为q,∵b1>
(1)B(n+1)=2B(n)+2=>B(n+1)+2=2(B(n)+2)所以:B(n)+2是等比数列公差为2,首项B1+2=4(2)B(n)=A(n+1)-A(n)B(n-1)=A(n)-A(n-1