设bn=(更号下3 3)^an 5,cn=

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/23 17:19:38
设bn=(更号下3 3)^an 5,cn=
设a1=2,a2=4,数列{bn}满足:bn=a(n+1)-an,b(n+1)=2bn+2.

答案啊这样的,我用照片给你发过去

数列 an=2n-1 设bn=an/3^n 求和tn=b1+..bn?

Tn=1/3+3/9+5/27+.+(2n-1)/3^n-----------(1)(1)×1/31/3Tn=1/9+3/27+5/81+.+(2n-3)/3^n+(2n-1)/3^(n+1)----

设数列{An}{Bn} 满足A1=B1= A2=B2=6 A3=B3=5且{An+1-An}是等差数列{Bn+1-Bn}

解题思路:考查了等差数列、等比数列的通项公式,以及二次函数的最值解题过程:

急 设A1=2,A2=4,数列Bn满足:Bn=A(n+1)-An,B(n+1)=2Bn +2

设A1=2A2=4数列Bn满足:B(n)=A(n+1)-A(n)①B(n+1)=2B(n)+2②B(n+1)=2B(n)+2===>[B(n+1)+2]=2[B(n)+2]可见B(n)+2是公比q=2

急 设A1=2,A2=4,数列BN满足:Bn=A(n+1)-An,B(n+1)=2Bn+2

2B(n+1)-Bn=2Bn+2-Bn=Bn+2B(n+1)+k=2(Bn+k)k=2所以Bn+2是以B1+2=4为首项2为公比的等比数列(Bn+2)/[B(n-1)+2]=2(n>1)A(n+1)-

数列an的前n项和为Sn=2^n-1,设bn满足bn=an+1/an,判断并证明bn 的单调性

Sn=2^n-1=>an=Sn-S(n-1)=2^n-2^(n-1)=2^(n-1)bn=an+1/an=2^(n-1)+1/(2^(n-1))那么有bn-b(n-1)=(2^(n-1)-2^(n-2

一道数学数列题设两个数列{An},{Bn}满足Bn=(A1+A2+A3+……+nAn)/(1+2+3+……+),若{Bn

你题目写错了,{Bn}的表达式应该是Bn=(A1+2A2+3A3+……+nAn)/(1+2+3+……+n)那啥,第n+1项我直接用B(n+1)来表示,你应该能看懂设Bn公差为dBn=(A1+2A2+3

已知数列{bn}是等差数列,b1=1,b1+b2+...+b10=100.(1)求数列{bn}的通项公式bn; (2)设

(1)Bn=3n-2b1+b2+b3+.+b10=10b1+d+2d+.+9d=10+45d=145则d=3因为Bn=b1+(n-1)*d所以Bn=3n-2不知道为什么只能输入99个字,请你再追问一下

设各项均为正数的数列{an}和{bn}满足:an,bn,an+1成等差数列,bn,an+1,bn+1等比数列且a1=1,

a(n+1)=√[bn*b(n+1)]2bn=an+an+12bn=√[bn*b(n-1)]+√[bn*b(n+1)]2√bn=√b(n-1)+√b(n+1)所以数列{√bn}为等差数列√b1=√2(

设正数数列[Bn]的前n项和Sn且Sn=1/2(Bn+1/Bn) 试探求Bn并用数学归纳法证明

Sn=1/2(Bn+1/Bn)而S(n-1)=Sn-Bn=1/2(1/Bn-Bn)所以Sn+S(n-1)=1/Bn以及Sn-S(n-1)=BnSn^2-S(n-1)^2=1而S1=a1=1/2(B1+

{an}是首项a1=4的等比数列,且S3、S2、S4成等差数列,设bn=log2丨an丨,Tn为数列{1/bn*bn+1

我不太清楚1/bn*bn+1到底是指bn分之一乘以bn+1,还是(bn*bn+1)分之一an的通式=4*(-2)^(n-1),丨an丨=4*2^(n-1)=2^(n+1)所以bn=log2丨an丨=n

Sn=n^2,设bn=an/3/,记数列{bn}的前n项和为Tn

a(1)=S(1)=1,n>1,a(n)=S(n)-S(n-1)=n^2-(n-1)^2=2n-1,a(n)=2n-1,n=1,2,...b(n)=a(n)/3^n=(2n-1)/3^n,n=1,2,

lim(3an+4bn)=8 lim(6an-bn)=1 求lim(3an+bn) 要设3an+4bn=m 6an-bn

设an的极限为mbn的极限为tlim(3an+4bn)=83m+4t=8lim(6an-bn)=16m-t=1m=4/9t=5/3lim(3an+bn)=3m+t=3第二题若an=(5-3x)^n1)

设bn=(an+1/an)^2求数列bn的前n项和Tn

a(n)=aq^(n-1),a>0,q>0.a+aq=a(1)+a(2)=2[1/a(1)+1/a(2)]=2[1/a+1/(aq)]=2(q+1)/(aq),a=2/(aq),q=2/a^2,a(n

an=3*2^(n-1),设bn=n/an求数列bn的前n项和Tn

将an带入bn得bn=n/3*2^(n-1);将Tn展开为Tn=1/3(1+2/2+3/2^2+4/2^3+...+n/2^(n-1))---此为1式然后等是两边同时1/2*Tn=1/3(1/2+2/

数学证明题: 设{an}{bn}是公比不等的两等比数列,Cn=an+bn,求证{cn}不是等比数列

证明:假设{Cn}为公比为q的等比数列设{an}的公比为q1,{bn}的公比为q2,则Cn=C1*q^(n-1)而C1=a1+b1,故Cn=a1*q^(n-1)+b1*q^(n-1)又因为an=a1*

求证极限:设数列{An},{Bn}均收敛,An=n(Bn-Bn-1),求证limAn = 0.

An=nBn-nBn-1,数列收敛必有极限.对于任意给定的ε1,存在N1使得,A为极限Bn=A+α;对于任意给定的ε2,存在N2使得Bn-1=A+β取N=max{N1,N2}使得An=n{α+(-β)

设An>0,级数An收敛,Bn=1-ln(1+An)/An,证明级数Bn收敛

再答:如果你认可我的回答,敬请及时采纳,在右上角点击“采纳回答”即可。再问:能不能再帮我解决几个问题?再问:再答:你发提问吧,我看到会解答的再问:第六题和第七题,很急啊,再答:傅里叶啊,计算量太大了再

设数列{an},{bn},满足an=[lg(b1)+lg(b2)+...+lg(bn)]/n,证明{an}为等差数列的冲

=====啊,等等再问:?怎么了?你会不?再答:马上再问:大哥~麻烦快点吧~急死我了~~~~~~~~~~~再答:①充分性,即:由“{bn}为等比数列”推出“{an}为等差数列”设bn公比为q,∵b1>

设A1=2,A2=4,数列{Bn}满足:Bn=A(n+1) –An,B(n+1)=2Bn+2.

(1)B(n+1)=2B(n)+2=>B(n+1)+2=2(B(n)+2)所以:B(n)+2是等比数列公差为2,首项B1+2=4(2)B(n)=A(n+1)-A(n)B(n-1)=A(n)-A(n-1