设A的每行元素的和均为6,6比为A的一个特征根

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 23:06:24
设A的每行元素的和均为6,6比为A的一个特征根
设A是n阶矩阵,对于齐次线性方程组AX=0,如果A中每行元素之和均为0.且r(A)=n-1,则方程组的通解是?,如果每个

显然(1,1,.,1)^T是AX=0的非零解,把r(A)=n-1代入公式解向量个数=未知量个数-系数矩阵的秩=n-(n-1)=1所以方程只有一个解向量,所以通解就是X=k(1,1,.,1)^T,其中k

Matlab随机生成m*n矩阵,矩阵的元素均为非负整数,要求矩阵的每行和小于80,每列和大于150.求指教.

fori=1:10000000A=8;B=35;mat=A+(B-A)*rand(10,4)forj=1:10sum(mat(j,:))ifsum(mat(j,:))150;continue;else

关于可逆矩阵的证明题已知n阶可逆矩阵A的每行元素之和均为a,证明A^-1的每行元素之和必为1/a没思路,请给予指导

给你个提示:把A右乘一个元素全是1的列向量,看能得到什么等式然后等式两端再同时乘以A的逆,看能得到什么

n阶可逆矩阵每行元素之和均为a,证明:每行元素之和必为1/a

记e=[1,1,...,1]^T,那么Ae=ae,两边同时左乘(aA)^{-1}即得A^{-1}e=a^{-1}e

用C语言编程:求出某数组a[5][5]每行元素的平均值和最大最小值

如果是纯C应该是下面这样的#include"stdio.h"intmain(){inta[5][5]={{1,2,4,4,5},{1,3,5,7,9},{2,4,6,8,10},{6,7,8,9,10

线性代数:设n元m个方程的齐次线性方程组AX=0的系数矩阵A的秩为n-1,如果矩阵A的每行的元素之和均为0,则线性方程组

系数矩阵A的秩为n-1,则AX=0的基础解系有n-r(A)=1个向量.再由A的每行的元素之和均为0知(1,1,...,1)'是AX=0的一个非零解.所以AX=0的通解是c(1,1,...,1)',c为

设n阶行列式D=a,且D的每行元素之和为b(b不等于0),则行列式D的第一列元素代数余子式之和等于多少.详

a/b将每一列的各元素(除去第一列)加到第一列上来,则第一列全为b提取b出来,则第一列全为1,记此时的行列式为E,则a=bIEI,∵行列式等于对应于它的任意一列各元素与其代数余子式的乘积之和∴IEI即

设n阶矩阵A是可逆矩阵且A的每行的元素的和是常量a .求证1、a 不等于0 ;2、A的逆矩阵的每行的元素的和为1/a

因为A的每行的元素的和是常量a所以A(1,1,...,1)^T=a(1,1,...,1)^T即a是A特征值而A的所有特征值的乘积等于|A|,由A可逆,|A|≠0所以a≠0.A^-1的特征值是1/a,对

求解大一线性代数:设n阶矩阵A的每行元素之和为1,则A必有一特征值为多少?

B第一列与各列相加能整理得1,……1,……1,……各行减第一行得到1,……0,……0,……则必有特正值1

设A为可逆矩阵,且每行元素之和都有等于常数a≠0,证明A-1 (-1为)A右上角的 的每一行元素之和都等于a-1

设n阶矩阵A=(a[i,j]),A^(-1)=(b[i,j]),其中1≤i,j≤n.由A^(-1)·A=E,有i≠j时∑{1≤k≤n}b[i,k]·a[k,j]=0,i=j时∑{1≤k≤n}b[i,k

n阶方阵的证明题设n阶方阵A的每行元素之和都为常数a,求证:对于任意自然数m,A^m的每行元素之和都为a^m另外还有一题

第一个:用矩阵的乘法定义就可以了:你看当m=1的时候,结论成立,假设m=k-1的时候成立,证m=k的时候成立就可以了.第二个:把基础解系的定义搞明白就行了:也就是说,齐次方程组的任何解都可以用基础解系

设A是n阶可逆矩阵,如果A中每行元素之和都是3,那么A的逆矩阵每行元素之和是多少

假设A为3介矩阵则做列变换后A=(a11+a12+a13a12a13a21+a22+a23a22a23a31+a32+a33a32a33)a11+a12+a13=1,a21+a22+a23=1a31+

设A是N阶可逆矩阵,如果A中每行元素之和都是5,求A-1的每行元素之和

A-1的每行元素之和1/5.A中每行元素之和都是5,则5是它的特征值,x=(1,1,..,1)^T是对应的特征向量,故Ax=5x故(1/5)x=A^-1x即1/5是A^-1的特征值,x=(1,1,..

证明:设n阶矩阵A的每行元素绝对值之和小于1,则矩阵A的特征值的绝对值小于1

证明:首先证明∑[i=1,n]λi^2=∑[i=1,n]∑[j=1,n]aijaji由于A^2的特征根为λ1^2,λ2^2,...,λn^2(想知道这个结论的证明可以另外定向提问)且特征跟的和即主对角

如果可逆矩阵A的每行元素之和均为a,证明A^-1的每行元素之和为a^-1.

A*(1,1,...,1)'=(a,a,...,a)'两边左乘A^-1(1,1,...,1)'=A^(-1)*(a,a,...,a)'两边除以数量a(1/a,1/a,...1/a)=A^(-1)*(1

设A是每行每列均含有一个1和三个0的4级方阵,求证:存在一个正整数m使得A^m=E,这

注意A的列实际上就是单位阵的4个列向量的一个排列而已,也就是说Ae1=ej1,Ae2=ej2,...,Aen=ejn,其中e1e2...,e4是单位阵的4个列.因此存在整数k1使得A^(k1)e1=e

设n阶可逆矩阵A中每行之和元素为常数a,证明A^(-1)的每行元素之和为a^(-1)

证明:令列向量x=(11.1)^-1则由题意可知Ax=(aa.a)^-1上式两边同乘A^-1可得x=A^(-1)*(aa……a)^-1,两边同除a得(1/a)x=A^(-1)(11.1)^(-1)积(

设n阶方阵A的行列式detA=a≠0,且A的每行元素之和为b,求detA的第一列元素的代数余子

这个很简单,得a/b.把行列式按第一列展开,设aij的代数余子式是Aij,则有a11A11+a21A21+...+an1An1=a,当m≠i或n≠j时,有对amnAij求和是0,这个你知道吧,因此有b

线性代数:(设3阶实对称矩阵A的各行元素和均为3,)

你注意,解有两个向量作为基,那么他的解在一个平面上.这意味着有两个自由变量n-r=2,换句话说,它的秩r=1.3*3的矩阵,r=1,这说明有两个线性相关的行.必然,行列式为0.而det(A)=特征值之