设A是方阵,A^k=0对某个正整数K成立,求证E A可逆

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/23 21:10:37
设A是方阵,A^k=0对某个正整数K成立,求证E A可逆
设A为N阶方阵,满足A^K=0,证明E-A可逆,并且(E-A)^-1=E+A+A^2+...+A^K-1

(E-A)(E+A+A^2+...+A^K-1)=E+A+A^2+...+A^K-1-(A+A^2+...+A^K)=E-A^k=E所以:E-A可逆,并且(E-A)^-1=E+A+A^2+...+A^

设A是n阶方阵,且(A+E)^2=0,证明A可逆.

由(A+E)^2=0得A^2+2A+E=0A(-A-2E)=E所以A可逆且逆矩阵为-A-2E

设A为n阶方阵,且A^k=0(k为正整数),则( ).

n阶方阵在复数域上有几个特征值呢?一定是n个,因为特征多项式|aE-A|是关于a的n次多项式,必有n个根.总之,计入复根,则A必有n个特征值.接下来如果特征值是a,那么由定义定有AX=aX于是a^kX

证明题 设方阵A满足A的k次方等於0 对某个正整数k成立 证明:A的特征值一定为0

证明:设λ是A的特征值则λ^k是A^k的特征值(这是定理)而A^k=0,零矩阵的特征值只能是0所以λ^k=0所以λ=0即A的特征值一定为0.

设A为n阶方阵,k是常数,证明:|kA|=k的n次方|A|

这是方阵行列式的基本性质kA是A中所有元素都乘以k取行列式|kA|:每一行都有一个k公因子,根据行列式的性质,每行提出一个k所以:|kA|=k^n|A|

设A为n阶方阵,且对某个正整数m,有A的m次方=0,证明E-A可逆,并求其逆

这类求证一个已知矩阵式另一个已知矩阵的逆矩阵的题型思路是证明它们的乘积等于单位阵请见下图

设n阶方阵A的行列式等于0,且有某个代数余子式A(ij)不等于0,证明:方程组AX=0的一般解为

证明:因为|A|=0所以AA*=|A|E=0所以A*的列向量都是AX=0的解.又因为|A|=0所以r(A)=1,所以r(A)>=n-1所以r(A)=n-1.所以AX=0的基础解系含n-r(A)=1个解

证明:若n阶方阵A的特征值全是0,则存在正整数k,使得A^k=0

设a是特征值,对应的特征向量为x,即Ax=ax,左乘A得A^2x=aAx=a^2x,继续递推下去有A^kx=a^kx,即a^k是A^k(=0)的特征值,因为a=0,所以A^k=a^k=0

设线性方程组AX=0只有零解,证A^k X=0也只有零解(A不一定是方阵)

注:由于题目中出现A^k,故A一定是方阵因为AX=0只有零解所以|A|≠0所以|A^k|≠0所以A^kX=0只有零解.

设A是任一n(n≥3)阶方阵,A*是其伴随矩阵,又k为常数,且k≠0,±1,则必有(kA)*=(  )

∵AA*=A*A=|A|E,∴A*=|A|A-1,从而:(kA)*=|kA|•(kA)-1=kn|A|•1kA−1=kn−1|A|A−1=kn−1A*,故选:B.

证明:设A是一个n阶方阵,如果对任一个n维向量x,都有Ax=0,那么A=0

证法一由于有关系式(A的秩)+(Ax=0的解空间维数)=n现在依照题意,Ax=0的解空间是整个空间,即(Ax=0的解空间维数)=n所以A的秩是零,因此A=0证法二(反证)设A≠0,则A的某个元素a(i

线性方程组证明设A是n阶方阵,Ax=0只有零解,求证,对任意正整数k,A^kx=0(A的k次方x)也只有零解

Ax=0只有零解所以|A|不等于0而|A^k|=|A|^k不等于零所以A^kx=0只有唯一解,就是零解

设A为n阶方阵,对其正整数k>1,A^k=0,证明:(E-A)^(-1)=E+A+A^2+,+A^(k-1)

由于(E+A+A^2+,+A^(k-1))(E-A)=(E+A+...+,+A^(k-1))-(A+...+,+A^k)=E-A^k=E(注意那个式子的抵消规律)所以命题成立

设A是n阶方阵,若有正整数k,使得A^k=E,证明A相似于对角矩阵

因为A^k=E所以A可逆,即A的特征根非零.如果A不可对角化,根据亚当标准型,存在两个非零向量x1,x2,及一个非零特征根a,使得:Ax2=ax2,Ax1=ax1+x2.则:A^2x1=A(ax1+x

证明:设A是n阶方阵,若A^2=0,则A=0

例如A=(01)(00)则A≠0且A^2=0

请问N阶方阵证明题设A是n阶方阵,证明:(1) |kA|=k^n|A| (k为非零常数)(2)|AA'|=|A|^2(3

主要工具都是|MN|=|M|*|N|(1)kA=(kE)A,所以|kA|=|kE|*|A|.kE是n阶对角阵,对角元全为k,所以行列式|kE|=k*k*...*k=k^n.所以|kA|=k^n|A|(

设λ=0是n阶方阵A的一个特征值,则|A|=?

行列式的值等于特征值乘积0

一道线性代数证明题若方阵A满足A的k次方=0,其中k为某个自然数,证明E-A可逆,且(E-BA)的-1次方=E+A+A平

A^k=0,E-A^k=E,展开,(E-A)*(E+A+A平方+A立方+...+A的k-1次方)=E.得证了赛.(后面是不是你打错了,B是咋个来的?)