设A是数域K上的n阶方阵.证明存在K上次数小于等于n^2的多项式,使
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 10:57:13
(A+E)的平方=OA²+2A+E=OA(A+2E)=-EA(-A-2E)=E所以有定义可知A可逆.
(E-A)(E+A+A^2+...+A^K-1)=E+A+A^2+...+A^K-1-(A+A^2+...+A^K)=E-A^k=E所以:E-A可逆,并且(E-A)^-1=E+A+A^2+...+A^
这个很简单啊,r(A)
这是方阵行列式的基本性质kA是A中所有元素都乘以k取行列式|kA|:每一行都有一个k公因子,根据行列式的性质,每行提出一个k所以:|kA|=k^n|A|
因为A~B设B=PAP-1则B^k=(PAP-1)^k=(PAP-1)(PAP-1)...(PAP-1)=PA(P-1P)A(P-1P)...AP-1=P(A^K)P-1所以A^k~B^k
因为A可逆,所以A^(-1)ABA=BA所以AB与BA相似.
有个重要关系式:AA*=det(A)E,A*是A的伴随阵.取行列式得det(A)det(A*)=det(A)^ndet(E)=det(A)^n,由于det(A)不等于0,因此有det(A*)=(det
设a是特征值,对应的特征向量为x,即Ax=ax,左乘A得A^2x=aAx=a^2x,继续递推下去有A^kx=a^kx,即a^k是A^k(=0)的特征值,因为a=0,所以A^k=a^k=0
假设A+E不可逆,则|A+E|=0所以-1是A的一个特征值设ξ是属于-1的一个特征向量则A^2ξ=A(-ξ)=-Aξ=ξ但A^2=A所以A^2ξ=Aξ=-ξ矛盾
由于(E+A+A^2+,+A^(k-1))(E-A)=(E+A+...+,+A^(k-1))-(A+...+,+A^k)=E-A^k=E(注意那个式子的抵消规律)所以命题成立
因为A的n个特征值互异所以A可对角化,且A相似于对角矩阵diag(a1,...,an)又因为n阶方阵B与A有相同的特征值所以B也可对角化,且B相似于对角矩阵diag(a1,...,an)由相似的传递性
1、R(A)=1,存在可逆的n阶方阵P、Q,A=PE11Q,E11是第一行第一列元素=1,其他元素都=0的矩阵.A=P(1,0,...,0)^T(1,0,...,0)QB=P(1,0,...,0)^T
设a为矩阵A的特征值,X为对应的非零特征向量.则有AX=aX.aX=AX=A^2X=A(AX)=A(aX)=aAX=a(aX)=a^2X,(a^2-a)X=0,因X为非零向量,所以.0=a^2-a=a
A乘以A^*等于对角线全是|A|的对角矩阵.所以|A*A^*|=|A|*|A^*|=|A|^n.所以|A^*|=|A|^n-1
1)r(A)=n等价于det(A)≠0等价于det(A*)=1等价于A*可逆等价于r(A*)=n2)
我证的是T^-1AT,你再调整一下字母吧~证明:设λ1,...,λs为A的所有不同的实特征根,且可知A与某一Jordan标准型矩阵J相似,即存在可逆实矩阵P使得P^(-1)AP=J,其中,J1λi1J
因为A^k=E所以A可逆,即A的特征根非零.如果A不可对角化,根据亚当标准型,存在两个非零向量x1,x2,及一个非零特征根a,使得:Ax2=ax2,Ax1=ax1+x2.则:A^2x1=A(ax1+x
A是正交矩阵的充分必要条件是A'A=EAA'=EA^(-1)=A'.由A,B是正交矩阵,所以A'A=E,B'B=E,等等.所以有[A^(-1)]'A^(-1)=(A')'A'=AA'=E,所以A^(-
主要工具都是|MN|=|M|*|N|(1)kA=(kE)A,所以|kA|=|kE|*|A|.kE是n阶对角阵,对角元全为k,所以行列式|kE|=k*k*...*k=k^n.所以|kA|=k^n|A|(
我只说简单的步骤,你可以自己试着推一下.(1)n阶方阵可以化成上三角阵和一些初等矩阵的乘积.(2)证明初等矩阵的乘积的行列式等于他们各自行列式的乘积.(3)证明上三角阵和上三角阵的乘积的行列式等于他们