设A是实对称矩阵,且A^2=0

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 16:05:06
设A是实对称矩阵,且A^2=0
矩阵A为实矩阵,且(A^T)A=A(A^T).证明:A是对称矩阵.

这个结论貌似是不正确的很容易可以举出反例:A=[0-1;10]A满足(A^T)A=A(A^T)=单位矩阵,然而A不是对称矩阵.这个题应该是少了什么约束条件吧?

设矩阵A是n×n阶实对称矩阵,且A的平方等于0,证明A=0

设矩阵A是n×n阶实对称矩阵,且A的平方等于0,证明A=0设A=[aij],其中i,j=1,2,...,n令C=A^2=A×A,依据矩阵乘法法则,C中主对角线上元素cii就是A的第i行和A第i列元素对

证明 正定矩阵问题:设A为n阶实对称阵,且A^2-5A+6E=0,求证A是正定矩阵~时间紧急,麻烦给出详细解答,谢谢!

特征方程吗!x^2-5x+6=0所以特征值为x1=2,x2=3,x3=2或者3特正直都是正数,一定正定了...

设A是实可逆对称矩阵,B是反对称矩阵且AB=BA证明A+B是可逆矩阵

写出A的实对称分A=QDQ^T,Q正交,D对角,且D=diag(a1E,...,akE),ai是互不相同的特征值.对应的B分块,AB=BA知道对应的Q^TBQ是块对角阵,每一个对角块都是反对称的,而a

线性代数题目设A是2阶实对称矩阵,且满足A^2+A-6E=0,其中E是2阶单位矩阵,求行列式detA的值

2种解法,楼主不知道看出错误的那个了没?用特征值的解法是正确的,2个矩阵相乘为0,不能得出其中某一时0矩阵,反例送上0100和0200相乘可以试试

设A为n阶实对称矩阵,且满足A3+A2+A=3E,证明A是正定矩阵.

假设 λ 为A的特征值,因为A3+A2+A=3E,所以 λ3+λ2+λ-3=0.即 (λ3-1)+(λ2-1)+(λ-1)=0,得(λ-1)(λ2+2λ+3)=0.解得,

如果A是实对称矩阵,且A^2=0,证明:A=0

用基本的矩阵知识就行.使用矩阵乘积的定义.设A是n阶方阵,第i行j列元素是aij.A的转置记为A^T,则0=A^2=A×A^T所以A×A^T的主对角线元素(a11)^2+(a12)^2+.+(a1n)

实对称矩阵 特征值设A是3阶实对称矩阵 启特征值为1,1,-1,且对应的特征向量为a=(1,1,1)b=(2,2,1)求

给提供个解题思路吧:实对称矩阵不同特征值的特征向量相正交显然ab都是1的特征向量求-1的特征向量只要和ab都正交满足即可!把特征向量施密特正交可以得到矩阵PP的转置AP=【1,1,-1】那么A=P【1

设A是n阶实对称矩阵,A^2=A,证明存在正交矩阵.

由于A是对称矩阵,因此存在正交矩阵T使得T^(-1)AT为对角矩阵,其中对角线上的元素为A的所有特征值,因此只要证A的特征值只有0和1即可由于A^2=A,所以A的特征是0或1,证毕

设A为对称矩阵,且|A|≠0,证明:A^-1也为对称矩阵

因为|A|=|A^T|≠0所以A^T可逆A^-1=(A^T)^-1=(A^-1)^T所以A^-1为对称阵

线性代数设A是秩为2的3阶实对称矩阵,且A^2+5A=0,则A的特征值为谢谢

因为A^2+5A=0所以A(A+5E)=0所以A的特征值只能是0或-5.而A是秩为2的3阶实对称矩阵所以A的特征值为0,-5,-5.再问:为啥A(A+5E)=0所以A的特征值只能是0或-5.再答:若a

设A是一个实对称矩阵,且 ,试证:必有实n维向量X,使XTAX

第一,实对称矩阵是可以正交相似对角化的.即A实对称则存在正交矩阵P,使得:P转置AP=对角阵(对角线上元素正好是n个特征值).这样的话就可以先不管A,我们先只看他的相似对角型,即只考虑对角阵,对角阵记

设A是n阶实对称矩阵,证明r(A)=r(A^2)

证明:因为A是实对称矩阵所以A相似于对角矩阵diag(λ1,λ2,...,λn)其中λi是A的特征值.因为相似矩阵有相同的秩,故r(A)=λ1,λ2,...,λn中非零数的个数.由A是实对称矩阵知A^

设A为n阶实对称矩阵,且满足A^3-2A^2+4A-3E=O,证明A为正定矩阵

设λ是A的特征值则λ^3-2λ^2+4λ-3是A^3-2A^2+4A-3E的特征值而A^3-2A^2+4A-3E=0,零矩阵的特征值只能是0所以λ^3-2λ^2+4λ-3=0.λ^3-2λ^2+4λ-

设A是n阶实对称矩阵且满足A^2=A,设A的秩为r,求行列式det(2E-A),其中E是n阶单位矩阵

A^2=AA^2-A-2E=-2E(A-2E)(A+E)=-2E(2E-A)(A+E)=2E|2E-A||A+E|=2^n现在求|A+E|的值A是实对称阵,必可相似对角化,存在可逆阵P,使得P^(-1

设A是3阶实对称矩阵,满足A∧2=3A,且R(A)=2,那么矩阵A的三个特征值是?

再问:为什么是330不是003呀?再答:因为它的秩为2,如果是0,0,3的话,秩就是1了。再问:我就是这个地方不明白,可以再说清楚一点吗π_π再答:实对称矩阵必相似于一个对角矩阵,且对角矩阵的对角元素

设a是n阶实对称矩阵,且满足A^2+2A=0,若kA+E是正定矩阵,则k的取值范围

由A^2+2a=0知道,A的特征值都是方程x^2+2x=0的根,所以A的特征值是0与-2,那么kA+E的特征值是k*0+1与k*(-2)+1,即1与1-2k,要想kA+E正定,则1-2k>0,所以k<

设A为是对称矩阵,且A^3-3A^2+5A-3I=0 ,问A是否为正定矩阵?

解:设a是A的特征值则a^3-3a^2+5a-3是A^3-3A^2+5A-3I=0的特征值所以a^3-3a^2+5a-3=0即(a-1)(a^2-2a+3)=0因为A是实对称矩阵,A的特征值都是实数所