设A是三阶矩阵,,且各行元素之和都是5,则A必有特征向量
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 01:37:31
|-3A|=(-3)^3|A|=81再问:怎么不是等于9的再答:那就不知道啦,n阶矩阵前面有系数的行列式就是系数的n次方
因为r(A)=n-1所以AX=0的基础解系所含向量的个数为n-r(A)=n-(n-1)=1.又因为A的各行元素之和均为零,所以a=(1,1,...,1)'是AX=0的一个非零解故a=(1,1,...,
由已知,|A*|=0,A*(1,1,...,1)^T=3(1,1,...,1)^T所以r(A*)=1所以r(A)=n-1所以AX=0的基础解系含1个向量.因为AA*=|A|E=0所以3A(1,1,..
A的各行元素之和为2,说明A(1,1...,1)^T=2(1,1,...,1)即2是A的特征值所以4是A^2的特征值所以4/3是1/3A^2的特征值所以3/4是(1/3A^2)^-1的特征值(B)正确
考察矩阵A的行列式,由于的各行元素之和均为a,故将a的行列式的第二至第n列都加到第一列,则第一列都变为a,如果a=0则|A|=0,与矩阵A可逆矛盾,所以a不等于0.
a为什么不能是0?题目也没说A是可逆矩阵再问:打漏了。。。是可逆矩阵再答:那么a不等于0是显然的,反证法可证;根据定义可知a是特征值,对应特征向量v的各元素全为1,即Av=av再问:为什么a是特征值呢
n阶矩阵A的各行元素之和均为零,说明(1,1,…,1)T(n个1的列向量)为Ax=0的一个解,由于A的秩为:n-1,从而基础解系的维度为:n-r(A),故A的基础解系的维度为1,由于(1,1,…,1)
A的秩为n-1,说明AX=0的基础解系含n-r(A)=1个解向量.A的各行元素之和均为0,说明A(1,1,...,1)^T=(0,0,...,)^T=0即(1,1,...,1)^T是AX=0的非零解,
A的各行元素之和为零,也就是A和(1,1,1,1)^T(其中^T代表转置)相乘为零.A有三个行向量线性无关,就是说A的行秩等于3.也就是A的秩r(A)=3(矩阵的行秩与列秩相等).方程AX=0的解空间
A中毎列元素的代数余子式之和=|A|=2
A的特征值为2,0,0.
因为A的每行的元素的和是常量a所以A(1,1,...,1)^T=a(1,1,...,1)^T即a是A特征值而A的所有特征值的乘积等于|A|,由A可逆,|A|≠0所以a≠0.A^-1的特征值是1/a,对
k(1,1,1)^TA的各行元素之和均为0说明A(1,1,1)^T=0r(A)=2说明AX=0的基础解系含1个向量
前提是该矩阵是方阵,这样所有元素均为1的列向量就是a对应的特征向量
AX=2XX=(1,1,1)T再问:没看懂再答:A(1,1,1)T=2(1,1,1)T如第一行1*a11+1*a12+1*a13=a11+a12+a13=2(各行元素之和均为2,)再问:还是不清楚啊!
你注意,解有两个向量作为基,那么他的解在一个平面上.这意味着有两个自由变量n-r=2,换句话说,它的秩r=1.3*3的矩阵,r=1,这说明有两个线性相关的行.必然,行列式为0.而det(A)=特征值之
1.因为AA*=|A|E=0所以A*的列向量都是Ax=0的解.2.因为Aki≠0,所以r(A)=n-1所以Ax=0的基础解系含n-r(A)=1个解向量而A*的第k列(Ak1,Ak2,...,Akn)≠
因为A(1,1,1)'=5(1,1,1)'.所以A必有特征向量(1,1,1)'.
因为A(1,1,1)'=5(1,1,1)'.所以A必有特征向量(1,1,1)'.