设a是n阶矩阵,且A^2=A

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 05:54:39
设a是n阶矩阵,且A^2=A
设A是n阶矩阵,满足AA^T=E(E是n阶单位矩阵),A^T是A的转置矩阵,且|A|

E+A^T=(E+A)^T两边取行列式|E+A^T|=|(E+A)^T|=|E+A|再问:甚妙甚妙!!!非常感谢!这个题我明白了。但是这个题里面A^T=A这个式子能不能成立呢?也就是说,已知AA^T=

设n阶矩阵A满足A^2=A,且r(A)=r,则|2E-A|=

因为A^2=AAα=λαλ^2=λ解得λ=1或0由于r(A)=r所以n阶矩阵A与对角矩阵1..1.1...0.0.0相似,其中λ=1为r重特征值,λ=0为n-r个则2E-A的特征值为1(r重),2(n

设矩阵A是n×n阶实对称矩阵,且A的平方等于0,证明A=0

设矩阵A是n×n阶实对称矩阵,且A的平方等于0,证明A=0设A=[aij],其中i,j=1,2,...,n令C=A^2=A×A,依据矩阵乘法法则,C中主对角线上元素cii就是A的第i行和A第i列元素对

设A是N阶方阵,若A2=A,且A不等于E,证A不是可逆矩阵

反证法若A是可逆矩阵,则A×A逆=EA=A×A×A逆=A×A逆=E矛盾

设A是n阶可逆矩阵,且A平方=/A/E,证明A的伴随矩阵A*=A

若A不可逆,则|A|=0.因为AA*=|A|E,所以AA*=0,又A*可逆,则A=0,这与A*可逆矛盾.所以A可逆

设n阶矩阵A满足A^2=A且A≠E,证明|A|=0

设j是的一特征值,则有X,使得AX=jX.而又有A^2×X=A(AX)=A(jX)=j(AX)=j^2×X因为A^2=A,故有:j^2×X=j×X即j^2=j求得j=0j=1由A^2=A有A^2-A-

设A为n阶矩阵,且满足A^2=A ,则下列命题中正确的是( ) 为什么

D,很显然A=I和O时等式都满足,所以A,B都不对,至于C显然矩阵1000满足,但是它不是OD只要在等式两侧同时乘以A得逆矩阵就可以得到

设A是n阶非零实矩阵,且A*=AT,证明:A是可逆矩阵

AA^*=|A|E说明AA^*的第一行第一列元素等于|A|E的第一行第一列的元素,而|A|E的第一行第一列的元素为|A|,而AA^*的第一行第一列的元为a11^2+a12^2+...+a1n^2,其他

设A是n阶实对称矩阵,A^2=A,证明存在正交矩阵.

由于A是对称矩阵,因此存在正交矩阵T使得T^(-1)AT为对角矩阵,其中对角线上的元素为A的所有特征值,因此只要证A的特征值只有0和1即可由于A^2=A,所以A的特征是0或1,证毕

设A是n阶矩阵,且A^2=A,证明r(A)+r(A-E)=n

书上例题.由A^2=A得出A的最小多项式只可能是三种情形1)A=0,显然命题成立2)A-E=0,命题也显然成立3)A(A-E)=0,最小多项式没有重根,也就是说没有若当块,换句话说就是特征值0,1的特

设A是N阶矩阵,且A的行列式|A|=a≠0,而A*是A的伴随矩阵,K是常数,则|KA*|是多少

A的伴随矩阵的行列式等于A的行列式的n-1次方所以最后的答案是k的n次方乘以a的n-1次方啦o(∩_∩)o...

设A为n阶方阵,且|A|=2,A*为A的伴随矩阵,则|A*|=?

设B为A的伴随矩阵,E为单位阵,AB=|A|E,|A||B|=|A|^n,|B|=|A|^(n-1)

设A是n阶实对称矩阵且满足A^2=A,设A的秩为r,求行列式det(2E-A),其中E是n阶单位矩阵

A^2=AA^2-A-2E=-2E(A-2E)(A+E)=-2E(2E-A)(A+E)=2E|2E-A||A+E|=2^n现在求|A+E|的值A是实对称阵,必可相似对角化,存在可逆阵P,使得P^(-1

设a是n阶实对称矩阵,且满足A^2+2A=0,若kA+E是正定矩阵,则k的取值范围

由A^2+2a=0知道,A的特征值都是方程x^2+2x=0的根,所以A的特征值是0与-2,那么kA+E的特征值是k*0+1与k*(-2)+1,即1与1-2k,要想kA+E正定,则1-2k>0,所以k<

设A是m*n的实矩阵,且rank(A)=n,证明A^T A是正定矩阵

对任何非0的n维实向量X,由于rank(A)=n,则AX!=0,从而有X^T(A^TA)X=(AX)^T(AX)=|AX|^2>0故A^TA是正定阵

设A是n阶矩阵,且A2=A+2I,证明r(a-2I)+r(A+I)=n

因为A^2-A-2I=0所以(A-2I)(A+I)=0所以r(A-2I)+r(A+I)