设A是n阶矩阵,且A^2=0,则(A-E)^-1=
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 03:53:06
E+A^T=(E+A)^T两边取行列式|E+A^T|=|(E+A)^T|=|E+A|再问:甚妙甚妙!!!非常感谢!这个题我明白了。但是这个题里面A^T=A这个式子能不能成立呢?也就是说,已知AA^T=
设矩阵A是n×n阶实对称矩阵,且A的平方等于0,证明A=0设A=[aij],其中i,j=1,2,...,n令C=A^2=A×A,依据矩阵乘法法则,C中主对角线上元素cii就是A的第i行和A第i列元素对
用性质,答案是-n.
反证法若A是可逆矩阵,则A×A逆=EA=A×A×A逆=A×A逆=E矛盾
因为A的每行的元素的和是常量a所以A(1,1,...,1)^T=a(1,1,...,1)^T即a是A特征值而A的所有特征值的乘积等于|A|,由A可逆,|A|≠0所以a≠0.A^-1的特征值是1/a,对
由性质直接证明因为(E-A)(E+A+A^2+……+A^(k-1))=E+A+A^2+……+A^(k-1)-A-A^2-……-A^(k-1)-A^k=E-A^k=E所以E-A可逆,且(E-A)^(-1
设j是的一特征值,则有X,使得AX=jX.而又有A^2×X=A(AX)=A(jX)=j(AX)=j^2×X因为A^2=A,故有:j^2×X=j×X即j^2=j求得j=0j=1由A^2=A有A^2-A-
A的平方-2A+E=0A(A-2E)+E=0A(A-2E)=-E(-A)(A-2E)=E(A-2E)的逆矩阵=-A
D,很显然A=I和O时等式都满足,所以A,B都不对,至于C显然矩阵1000满足,但是它不是OD只要在等式两侧同时乘以A得逆矩阵就可以得到
AA^*=|A|E说明AA^*的第一行第一列元素等于|A|E的第一行第一列的元素,而|A|E的第一行第一列的元素为|A|,而AA^*的第一行第一列的元为a11^2+a12^2+...+a1n^2,其他
如果A可逆的话是n*n的
由于A是对称矩阵,因此存在正交矩阵T使得T^(-1)AT为对角矩阵,其中对角线上的元素为A的所有特征值,因此只要证A的特征值只有0和1即可由于A^2=A,所以A的特征是0或1,证毕
书上例题.由A^2=A得出A的最小多项式只可能是三种情形1)A=0,显然命题成立2)A-E=0,命题也显然成立3)A(A-E)=0,最小多项式没有重根,也就是说没有若当块,换句话说就是特征值0,1的特
A的伴随矩阵的行列式等于A的行列式的n-1次方所以最后的答案是k的n次方乘以a的n-1次方啦o(∩_∩)o...
因为A,B为正交矩阵,所以┃A┃┃A+B┃=┃A’┃┃A+B┃=┃E+A’B┃=┃B’B+A’B┃=┃B’+A’┃┃B┃=┃A+B┃B┃=-┃A┃┃A+B┃.所以┃A┃┃A+B┃=0.所以┃A+B┃=
A^2=AA^2-A-2E=-2E(A-2E)(A+E)=-2E(2E-A)(A+E)=2E|2E-A||A+E|=2^n现在求|A+E|的值A是实对称阵,必可相似对角化,存在可逆阵P,使得P^(-1
由A^2+2a=0知道,A的特征值都是方程x^2+2x=0的根,所以A的特征值是0与-2,那么kA+E的特征值是k*0+1与k*(-2)+1,即1与1-2k,要想kA+E正定,则1-2k>0,所以k<
对任何非0的n维实向量X,由于rank(A)=n,则AX!=0,从而有X^T(A^TA)X=(AX)^T(AX)=|AX|^2>0故A^TA是正定阵
因为A^2-A-2I=0所以(A-2I)(A+I)=0所以r(A-2I)+r(A+I)
/>n阶矩阵A满足A^2=E,===》矩阵A的零化多项式无重根,并且根只能为正负1,===》矩阵A的最小多项式无重根,并且根只能为正负1,===》矩阵A可以对角化,并且矩阵A的特征值只能为正负1,又因