设A是m*n阶矩阵,齐次线性方程组Ax=0仅有零解的充要条件是
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 01:38:25
这里的m*n是为了保证能化成正对角线对角形式的最大值.拿A中的最后一列和B中的列交换,从B中的第一列依次交换到B肿的最后一列,这时,A中的被交换的这一列被交换到B中的最后一列,而B中的第一列被交换到了
由于:R(B)>=R(AB).定理(条件一)B是m*n矩阵,所以R(B)=n且R(B)
A为m×n矩阵,∴A有m行n列,且方程组有n个未知数 Ax=0仅有零解⇔A的秩不小于方程组的未知数个数n∵R(A)=n⇔A的列秩=n⇔A的列向量线性无关.矩阵A有n列,∴A的列向量组线性无关
选a再问:Ϊʲô��再答:���ϵ������ʽ��ֵ���㡣��ֻ�������再问:лл��再答:���á���再问:û���װ�再问:�ڲ���再答:�ڡ���再答:���ҵ绰�������㽲�
证明:由C可逆知r(C)=n所以n=r(C)=r(AB)
易知:A是m*n矩阵,且列向量组线性无关,所以r(A)=n,所以r(AB)=r(A)=n,因为n=r(AB)≤r(B)(或r(A))≤n(B是n阶矩阵)所以n≤r(B)≤n=>r(B)=n(2)此外,
由已知,r(A)=r(A,b)=n又因为A是实矩阵,故有r(A'A)=r(A)=n所以A'A是n阶可逆矩阵
就是证明他的加法和数量乘法也属于那个空间就可以了
AB=A-B(I+A)(I-B)=I于是(I+A)和(I-B)都可逆,(I-B)(I+A)=I展开得BA=A-B,即有结论.楼上的做法依赖于A可逆,碰到A=B=0这种就不行.
方程组Bx=0的解都是Cx=0的解,但是C可逆,所以Cx=0只有零解,所以Bx=0也只有零解,所以B的列向量线性无关
齐次线性方程组AX=0仅有零解的充要条件是(1)r(A)=n(2)A的列向量线性无关.再问:Ϊʲô����������再问:�����У�再答:A���������鲻��������ص�再问:�£��
R(E)=n=R(AB)≤R(B)≤n,∴R(B)=n=B的“列秩”=B的列数.∴B的列向量组线性无关.
如果A可逆的话是n*n的
选D.若Ax=b有无穷多个解等价于R(A)=R(A,B)
反证法:如果B的列向量线性相关.则R(B)
证明:设B1,B2,…,Bn为B的列向量组,假设存在k1,k2,…,Kn,使得k1B1+k2B2+…+knBn=0,则:A(k1B1+k2B2+…+knBn)=0,即:k1AB1+k2AB2+…+kn
线性方程组AX=0有非零解r(A)
把B写出分块矩阵的形式,B=(b1,b2,..bs),其中bi是B的第i个列向量,(i=1,2..s)AB=0A(b1,b2,..bs)=(Ab1,Ab2,..Abs)=0=(0,0,...0)Abi
证明:首先有r(B)>=r(AB)=r(I)=m而B只有m列,所以r(B)
只能选B小于m再问:����ϸ����һ����лл再答:û����ϸ���ͣ������Ŀ�Dz��걸�ģ�ֻ��ѡB������R(AB)n����Ϊ����m>nʱA�������صģ�B���