设A是m*n 矩阵,r(A)=r,则Ax=0的解空间维数
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 11:23:16
(A)=5因为r(ATA)=r(A)证明如下:若ATAx=0则xTATAx=0则(Ax)TAx=0就是说Ax这个向量的内积是0从而这个向量是0即Ax=0这说明r(A)=r(ATA)综合上述两方面R(A
AB的列向量可由A的列向量线性表示所以r(AB)
依题意r(A)=r
正确因为B可逆所以RA(B)=R(A)=m.知识点:若P,Q可逆,则R(PA)=R(AQ)=R(PAQ)=R(A)
教科书中应该有这样的两个结论:1.初等变换不改变矩阵的秩2.可逆矩阵可以表示成初等矩阵的乘积由P,Q可逆,所以它们可以表示成初等矩阵的乘积所以PA相当于对A做若干初等行变换,它的秩不变,即仍是A的秩同
方法:证明齐次线性方程组AX=0(1)与A^TAX=0(2)同解即可显然(1)的解是(2)的解设X0是(2)的解,则A^TAX0=0所以X0^TA^TAX0=0所以(AX0)^T(AX0)=0所以AX
设一分块矩阵C上块为A下块为BCx=0的解就是Ax=0与Bx=0的公共解r(C)
提示:可逆矩阵可以看成若干初等矩阵的乘积.用等价矩阵秩相等去证.
如果r(A)=n结合r(A)=n此外,又知道r(B)
因为R(A)=n那么取A中n行构成A的基CC的大小是n*n设R(B)=y同理取B的基DD的大小是n*y因为R(C*D)=R(D)=R(B);所以R(AB)=R(B);
题目有点小错误,B的阶数是mxr,否则不能随便乘取m阶可逆阵P和n阶可逆阵Q使得A=PDQ,其中D=I_r000取B为P的前r列,C为Q的前r行即可.
这类问题可用证明齐次线性方程组同解的方法显然,AX=0的解都是A'AX=0的解.反之,若X1是A'AX=0的解则A'AX1=0所以X1'A'AX1=0故(AX1)'(AX1)=0所以有AX1=0即A'
这个就可以当公式来用,如果非要证明的话,如下:r(At*A)≤min(r(At),r(A)),而r(A)=r(At),所以r(At*A)=r(A)
=m,r=n,m=n,r再问:这是一道选择题,我想问分别当r=m,r=n,m=n,
证:将B按列分块为B=(b1,...,bs)因为AB=0所以A(b1,...,bs)=(Ab1,...,Abs)=0所以Abi=0,i=1,...,s即B的列向量都是齐次线性方程组AX=0的解向量所以
n值为AB所共有那么只能把AB和n作比较如果是A行秩B列秩的话(既引入m又引入s)无法比较
证明:因为A是实对称矩阵所以A相似于对角矩阵diag(λ1,λ2,...,λn)其中λi是A的特征值.因为相似矩阵有相同的秩,故r(A)=λ1,λ2,...,λn中非零数的个数.由A是实对称矩阵知A^
R(A)=5.因为R(A^TA)=R(A),下面简单证明一下:任何满足Ax=0的x向量,必然满足A^TAx=0,所以R(A^TA)=R(A).所以只能有R(A^TA)=R(A).
只能选B小于m再问:����ϸ����һ����лл再答:û����ϸ���ͣ������Ŀ�Dz��걸�ģ�ֻ��ѡB������R(AB)n����Ϊ����m>nʱA�������صģ�B���
D-----根据定义,矩阵的秩是最高阶非零子式的阶.A的秩是r,所以高于r阶的子式全为零,且r阶子式一定有非零的.