设A是4×3矩阵,且r(A)=2,已知x1x2x3是线性方程AZ=b的三个特解

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 17:58:41
设A是4×3矩阵,且r(A)=2,已知x1x2x3是线性方程AZ=b的三个特解
设A为4阶方阵,且秩R(A)=3,A*为A的伴随矩阵,则R(A*)=

R(A*)=1因为R(A)=3,所以A*不为0矩阵,所以R(A*)>=1AA*=|A|E=0所以R(A)+R(A*)

设a,b分别是m*n,n*s矩阵且b为行满值矩阵,证明:r(ab)=r(a)的详细解题

证明:首先有r(AB)≤min(r(A),r(B))≤r(A).再由B为行满秩,r(B)=n所以B可经过初等行变换化为(En,B1).所以存在可逆矩阵P使PB=(En,B1),且有r(AP^(-1))

证明:设A,B是m*n矩阵,且R(A)=r1,R(B)=r2,则R(A+_B)

A的列+B的列=A+B的列而A的每一列可以写成A的列空间的基的线性组合B的也可以写成B列空间的基的线性组合从而A+B的列就可以写成A与B的极大无关组的线性组合从而A+B的列这一向量组可以被A和B的极大

设A是4阶矩阵,且|A|=2,则|A的负一次方|=?|3A*|=?

|A^(-1)|=1/|A|=1/2|3A*|=3^3|A*|=81|A|^(4-1)=81*8=648

设A、B都是n阶矩阵,且AB=O,证明R(A)+R(B)

设A的R(A)=r,则Ax=0的解空间的维数为n-r,再设B=[b1,b2,..,bn],其中b1,b2,..,bn是矩阵B的列,由AB=O,得Ab1=O,Ab2=0,...,Abn=0,故b1,b2

设A,B均是n阶矩阵,且秩r(A)+r(B)

1.rank(A)=dimKer(A)+dimKer(B)-dimR^n>0.再任取Ker(A)∩Ker(B)中的非零元x即可.方法二:Ax=0且Bx=0当且仅当(A|B)x=0,其中(A|B)为A和

设A是m*n矩阵,且R(A)=r,则当r=m,r=n,m=n,r

=m,r=n,m=n,r再问:这是一道选择题,我想问分别当r=m,r=n,m=n,

设A为M乘N的矩阵,且A的秩R(A)=M

知识点:向量组a1,...,as线性无关的充要条件是向量组的秩等于s.R(A)=M,所以A的行向量组的秩为M.而A有M行,所以A的行向量组线性无关.R(A)=M,所以A的列向量组的秩为M.而A有N行,

A,B是n阶矩阵,且A是满秩矩阵,为什么R(AB)=R(B)?

A可逆,可表示为初等矩阵的乘积A=P1...PsP1,PsB相当于对B做初等行变换而初等变换不改变矩阵的秩所以R(AB)=R(B)

设A是n阶矩阵,且A^2=A,证明r(A)+r(A-E)=n

书上例题.由A^2=A得出A的最小多项式只可能是三种情形1)A=0,显然命题成立2)A-E=0,命题也显然成立3)A(A-E)=0,最小多项式没有重根,也就是说没有若当块,换句话说就是特征值0,1的特

设A是m*n矩阵,B为n×s矩阵,r(A)=r<n,且AB=0.证明:秩(B)≦n-r

证:将B按列分块为B=(b1,...,bs)因为AB=0所以A(b1,...,bs)=(Ab1,...,Abs)=0所以Abi=0,i=1,...,s即B的列向量都是齐次线性方程组AX=0的解向量所以

设A是4x5矩阵,且r(A)=3,向量a1,a2,a3是齐次线性方程组AX=0的三个解

对向量a1,a2,a3施密特正交化即可再问:嗯,这个我知道,但是,施密特正交化的话,不是可以找到3个正交基吗?可是n-r(A)=2,只有两个标准正交基,这里怎么做?再答:找出向量a1,a2,a3的极大

设A是m*n矩阵,B是n*s矩阵,满足AB=0,且A,B均为非零矩阵,那么r(A)+r(B)≤n,r(A)≥1,r(B)

n值为AB所共有那么只能把AB和n作比较如果是A行秩B列秩的话(既引入m又引入s)无法比较

设A是3阶实对称矩阵,满足A∧2=3A,且R(A)=2,那么矩阵A的三个特征值是?

再问:为什么是330不是003呀?再答:因为它的秩为2,如果是0,0,3的话,秩就是1了。再问:我就是这个地方不明白,可以再说清楚一点吗π_π再答:实对称矩阵必相似于一个对角矩阵,且对角矩阵的对角元素

线性代数:设A为m x n矩阵且秩(A)=r的充要条件是

D-----根据定义,矩阵的秩是最高阶非零子式的阶.A的秩是r,所以高于r阶的子式全为零,且r阶子式一定有非零的.

设A为3阶矩阵,且A^2=0,则R(A)=?

A^2=0即AA=0那么在这里由矩阵秩的不等式R(A)+R(B)-n≤R(AB)可以知道,2R(A)-3≤R(A^2)=0所以2R(A)≤3即R(A)≤1.5显然秩只能为非负整数,那么R(A)=0或1

设 a是方阵,a'是a的转置矩阵,且a'的秩r(a')=n-1则a的秩r(a)=

(a)=r(a')=n-1矩阵的秩与其转置矩阵的秩相等.

设A为r*r阶矩阵,B为r*n阶矩阵且R(B)=r,证明:

1)由AB=0,得R(A)+R(B)《r.又R(B)=r,故R(A)《0.显然R(A)》0.故R(A)=0既A=02)如果AB=B,则AB-B=0.即(A-E)B=0,R(B)+R(A-E)《r.又R

设矩阵A与矩阵B等价,且r(A)=n,则r(B)=多少?

存在可逆矩阵P、Q,使PAQ=B,则A与B等价,充要条件是A与B是同型矩阵且R(A)=R(B)=n