设a是3阶方阵,|A|=-2,则A的逆矩阵的绝对值
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 19:13:21
由(A+E)^2=0得A^2+2A+E=0A(-A-2E)=E所以A可逆且逆矩阵为-A-2E
证明:设a是A的特征值则a^2-2a是A^2-2A的特征值因为A^2-2A=0所以a^2-2a=0所以a(a-2)=0所以a=0或a=2.即A的特征值只能是0或2.
因为A^2-4A+3E=0所以A(A-2E)-2(A-2E)-E=0所以(A-2E)(A-2E)=E所以A-2E可逆所以2E-A可逆所以B=(2E-A)^T(2E-A)是正定矩阵--正定合同于单位矩阵
因为A*=|A|A^(-1)=(1/2)A^(-1)所以|(2A)^(-1)-5A*|=|(1/2)A^(-1)-(5/2)A^(-1)|=|(-2)A^(-1)|=(-2)^3|A^(-1)|=-8
设A的特征值是a,则a^2-3a+2是A^2-3A+2E的特征值.由已知A^2-3A+2E=0,而零矩阵的特征值只能是零,所以a^2-3a+2=0,即(a-1)(a-2)=0.所以a=1或a=2.即A
A的特征值是1,2,3则A^2的特征值是1^22^23^2即1494A的特征值是4*14*24*3即4812A^2-4A的特征值是1-44-89-12即-3-4-3则|A^2-4A|=(-3)*(-4
将A^2+2A-4E=0变化为A^2+2A-3E=E,即(A+3E)*(A-E)=E,因为(A-E)可逆,所以A+3E的逆方阵为(A-E)^-1
27/2.计算过程如图,经济数学团队帮你解答.请及时评价.再问:A^*=A的行列式乘以A^-1=2A^-1为什么
由A是4阶方阵,且AAT=2E,得|A|^2=|AAT|=|2E|=2^4=16.又由|A|
A*=|A|A^(-1)=2A^(-1)由|A|=2知|A^(-1)|=1/2|3A*|=|6A^(-1)|=6³|A^(-1)|=6³×1/2=108A^(-1)表示A的逆矩阵
1)r(A)=n等价于det(A)≠0等价于det(A*)=1等价于A*可逆等价于r(A*)=n2)
因为|kA|=k^3|A|,所以|3A²|=3^3*|A|²=9*(-2)²=9*4=36.
因为r(A)=3-1,所以r(A*)=1,从而存在非零列向量a、b使得A*=ab^T则(A*)^3=(ab)^T=(b^Ta)(ab^T)^2=0所以b^Ta=0或(ab^T)^2=(A*)^2=0若
例如A=(01)(00)则A≠0且A^2=0
|(2A)*|=|2A|^(3-1)=(2^3|A|)^2=4^2=16.
第二个特征值如果是0,则结果为44
因为A+2E,A-E,2A-E均不可逆所以A的特征值为:-2,1,1/2所以A²的特征值为:4,1,1/4A²+E的特征值为:5,2,5/4所以|A²+E|=5×2×(5
|3A|=3³|A|=27×3=81