设a大于0,fx=e的x次方除以a加上a除以e的x次方是R上的偶函数

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 01:44:55
设a大于0,fx=e的x次方除以a加上a除以e的x次方是R上的偶函数
设函数fx=e的x次方-1-x-ax 若当x≥0,f(x)≥0,求a 的取值范围

f(x)=e^x-1-x-axf'(x)=e^x-(a+1)若a+1≤0,也即a≤-1,则f'(x)>0,f(x)严格单增,故只需f(0)≥0,1-1-(a+1)*0≥0,得0≥0恒成立.故a≤-1时

设函数fx=(x+1)In(x+1),若对所有的x大于等于0,都有fx大于等于ax恒成立,求实数a的取值范围

(x+1)ln(x+1)>=axa=0所以g(x)为增函数又g(0)=0所以g(x)>=0所以f'(x)=g(x)/x^2>=0所以f(x)为增函数f(x)min=lim(x->0)((x+1)ln(

已知fx=【(a的x次方减1分之1)+二分之一】的x的三次方 (a大于0且a不等于1)

1).求函数fx的定义域x不等于0 2).奇函数 3).没有任何a值能满足要求.

设a属于R,若函数y=e的ax次方+3x (x属于R),有大于0的极值点,求a的范围

由题意得y=e^ax+3x在x>0时存在导数为0的点;y'=a*e^ax+3=0-》e^ax=-3/a;因为e^ax>0所以ax=ln(-3/a)/a;因为存在x>0;a

设函数fx=(ax+1-a)e的x次方,(1)求函数fx的单调区间;(2)若fx≥0在区间【1,2】上恒成立,求实数a的

1f'(x)=ae^x+(ax+1-a)e^x=(ax+1)e^x当a=0时,f'(x)=e^x>恒成立∴f(x)的单调递增区间为(-∞,+∞)当a>0时,由f'(x)>0得ax+1>0∴x>-1/a

已知函数fx=ax²-e的x次方

因为f(x)=ax²-e^x所以f′(x)=2ax-e^x(1)当a=1时,f′(x)=2x-e^x所以f″(x)=2-e^x当x>ln2时,f″(x)0时令f′(x)=2ax-e^x=0得

设a大于0,f(x)=e的x次方除于a加上e的x次方分之a是R上的偶函数,(1)求实数a的值.

f(x)=e^x/a+a/e^xf(-x)=e^(-x)/a+a/e^(-x)=1/(a*e^x)+ae^x=f(x)=e^x/a+a/e^x1/(a*e^x)+ae^x=e^x/a+a/e^x偶函数

1设a大于0,f(x)=(a分之e的x次方)加(e的x次方分之a)是R上的函数,则a的值为

f(x)=e^x/a+a/e^xf(-x)=e^(-x)/a+a/e^(-x)=1/(ae^x)+ae^x偶函数则f(x)=f(-x)e^x/a+a/e^x=1/(ae^x)+ae^x即e^x/a+a

设函数fx=e的x次方+a(x-2),若fx大于等于0对一切x属于R恒成立,则a的取值范围是

主要讨论f(x)的单调性求导f(x)'=e^x+a分类讨论1.a>=0时f(x)'恒大于0,于是f(x)单调递增,结合fx大于等于0对一切x属于R恒成立,知limf(x)[x-->-无穷]>=0,于是

设函数[fx]=x平方e的x-1次方+ax的3次方+bx的平方,已知X=-2和X=1为f[x]的极点.1,求a b 2求

1】由题意求导f‘(x)=2xe^(x-1)+x^2*e^(x-1)+3ax^2+2bxf'(-2)=f'(1)=0代入得a=-1/3b=-12】f(x)=x^2*e^x-x^3/3-x^2设F(x)

已知fx=in(e的x次方+a)是定义在R上的奇函数,gx=“入”fx

(1)函数f(x)=ln(ex+a)是定义域为R的奇函数,令f(0)=0,即ln(1+a)=0,解得a=0,故函数f(x)=ln(ex)=x.…(4分)显然有f(-x)=-f(x),函数f(x)=x是

设函数fx=e的x次方—1—x—ax的平方 若a=0,求fx的极值

a=0,f(x)=e^x-1-xf'(x)=e^x-1=0e^x=1x=0x>0时f'(x)>0,x

设函数fx=x(e的x次方-1)-ax² 若当x≥0时,fx≥0,求a的取值范围

首先把式子列出来:f(x)=x(e^x-1)-ax^2(应该是这个)然后考虑x=0时,f(x)=0,(那么就好办了,只需证明在x大于等于零的时候,f(x)单调递增就行了)接下来,求导f'(x)=(x+

设a大于0,f(x)=(a分之e的x次方)加(e的x次方分之a)是R上的偶函数

1)f(x)=e^x/a+a/e^x是R上的偶函数f(-x)=e^(-x)/a+a/e^(-x)=1/(ae^x)+ae^x=f(x)=e^x/a+a/e^x在R上恒成立则a=1/a,得a=±1,又a

设a^2x=2且a大于0,a不等于1,求(a^3x+a^-3x)除于(a^x+^-x)的值

x^3+y^3=(x+y)(x^2-xy+y^2)[a^(3x)+a^(-3x)]/[a^x+a^(-x)]={[a^x]^3+[a^(-x)]^3}/[a^x+a^(-x)]=[a^x+a^(-x)

急!已知函数fx=x分之lnx+a(a大于0) 1.求fx的极值 2.若函数fx的图象与函数gx=1的图象在区间(0,e

1.∵f(x)=x分之lnx+a∴f'(x)=(1-lnx-a)/x^2令f'(x)=0,得驻点x=e^(1-a).x=e^(1-a)时,极大值f(x)=1/(e^(1-a))=e^(a-1)2.①∵

设a大于0,f(x)=e的x次方/a+a/e的x次方,是 R 上的偶函数,1问:求a的值;2问:证明f(x) 在 (0,

设a>0,f(x)=e^x/a+a/e^x,是R上的偶函数,1问:求a的值;2问:证明f(x)在(0,+∞)上是增函数!(1)因为f(x)=e^x/a+a/e^x,是R上的偶函数即:f(x)=f(-x