设a大于0,fx=e的x次方除以a加上a除以e的x次方是R上的偶函数
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 01:44:55
f(x)=e^x-1-x-axf'(x)=e^x-(a+1)若a+1≤0,也即a≤-1,则f'(x)>0,f(x)严格单增,故只需f(0)≥0,1-1-(a+1)*0≥0,得0≥0恒成立.故a≤-1时
(x+1)ln(x+1)>=axa=0所以g(x)为增函数又g(0)=0所以g(x)>=0所以f'(x)=g(x)/x^2>=0所以f(x)为增函数f(x)min=lim(x->0)((x+1)ln(
1).求函数fx的定义域x不等于0 2).奇函数 3).没有任何a值能满足要求.
要讨论,分a>1与00.当0
由题意得y=e^ax+3x在x>0时存在导数为0的点;y'=a*e^ax+3=0-》e^ax=-3/a;因为e^ax>0所以ax=ln(-3/a)/a;因为存在x>0;a
1f'(x)=ae^x+(ax+1-a)e^x=(ax+1)e^x当a=0时,f'(x)=e^x>恒成立∴f(x)的单调递增区间为(-∞,+∞)当a>0时,由f'(x)>0得ax+1>0∴x>-1/a
因为f(x)=ax²-e^x所以f′(x)=2ax-e^x(1)当a=1时,f′(x)=2x-e^x所以f″(x)=2-e^x当x>ln2时,f″(x)0时令f′(x)=2ax-e^x=0得
f(x)=e^x/a+a/e^xf(-x)=e^(-x)/a+a/e^(-x)=1/(a*e^x)+ae^x=f(x)=e^x/a+a/e^x1/(a*e^x)+ae^x=e^x/a+a/e^x偶函数
f(x)=e^x/a+a/e^xf(-x)=e^(-x)/a+a/e^(-x)=1/(ae^x)+ae^x偶函数则f(x)=f(-x)e^x/a+a/e^x=1/(ae^x)+ae^x即e^x/a+a
主要讨论f(x)的单调性求导f(x)'=e^x+a分类讨论1.a>=0时f(x)'恒大于0,于是f(x)单调递增,结合fx大于等于0对一切x属于R恒成立,知limf(x)[x-->-无穷]>=0,于是
1】由题意求导f‘(x)=2xe^(x-1)+x^2*e^(x-1)+3ax^2+2bxf'(-2)=f'(1)=0代入得a=-1/3b=-12】f(x)=x^2*e^x-x^3/3-x^2设F(x)
(1)函数f(x)=ln(ex+a)是定义域为R的奇函数,令f(0)=0,即ln(1+a)=0,解得a=0,故函数f(x)=ln(ex)=x.…(4分)显然有f(-x)=-f(x),函数f(x)=x是
a=0,f(x)=e^x-1-xf'(x)=e^x-1=0e^x=1x=0x>0时f'(x)>0,x
首先把式子列出来:f(x)=x(e^x-1)-ax^2(应该是这个)然后考虑x=0时,f(x)=0,(那么就好办了,只需证明在x大于等于零的时候,f(x)单调递增就行了)接下来,求导f'(x)=(x+
1)f(x)=e^x/a+a/e^x是R上的偶函数f(-x)=e^(-x)/a+a/e^(-x)=1/(ae^x)+ae^x=f(x)=e^x/a+a/e^x在R上恒成立则a=1/a,得a=±1,又a
x^3+y^3=(x+y)(x^2-xy+y^2)[a^(3x)+a^(-3x)]/[a^x+a^(-x)]={[a^x]^3+[a^(-x)]^3}/[a^x+a^(-x)]=[a^x+a^(-x)
1.∵f(x)=x分之lnx+a∴f'(x)=(1-lnx-a)/x^2令f'(x)=0,得驻点x=e^(1-a).x=e^(1-a)时,极大值f(x)=1/(e^(1-a))=e^(a-1)2.①∵
设a>0,f(x)=e^x/a+a/e^x,是R上的偶函数,1问:求a的值;2问:证明f(x)在(0,+∞)上是增函数!(1)因为f(x)=e^x/a+a/e^x,是R上的偶函数即:f(x)=f(-x