设A和B分别为n阶和m阶可逆矩阵,求(O A,B O)-1
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 01:10:00
题目只让你证明,你把两个矩阵乘起来验证一下就行了.验证它们的乘积等于单位阵.如图(点击可放大):
由A,B可逆令H=0B^-1A^-10由H[OA;BO]=E所以[OA/BO]可逆,且[OA/BO]^-1=H.
AB的行列式等于A的行列式与B的行列式之积,AB为可逆矩阵,故AB的行列式不等于零,于是A的行列式与B的行列式均不等于零,故A,B都是可逆矩阵.
最有问题,能有反例,比如令A=B=0就满足AB=A-B=0但AB=0,不可逆
AB-I=AB-(B^-1)*B=(A-B^-1)*B所以上式两边都右乘(AB-I)^-1,得到I=(A-B^-1)*B*(AB-I)^-1=(A-B^-1)*(B*(AB-I)^-1)那(A-B^-
是A,D可逆吧设H=ABCD一方面有E0-CA^-1E乘H=AB0D-CA^-1B所以|H|=|A||D-CA^-1B|.另一方面H乘E0-D^-1CE=A-BD^-1CB0D所以|H|=|D||A-
证明:由C可逆知r(C)=n所以n=r(C)=r(AB)
利用知识点r(AB)
提示:可逆矩阵可以看成若干初等矩阵的乘积.用等价矩阵秩相等去证.
行列式可由Laplace展开定理,按第n+1,n+2,...,n+m行展开|D|=|A||B|(-1)^tt=n+1,n+2,...,n+m+1+2+...+m=mn+2(1+2+..+m)所以|D|
初等行变换相当于在矩阵的左边乘一系列初等矩阵初等矩阵的乘积是可逆矩阵P(A,B)=(E,X)PA=EPB=X得P=A^-1,X=A^-1B
任何一个可逆阵,可以写成若干个初等阵的积左(右)乘一个初等阵,相当于做一次初等行(列)变换所以一个可逆阵乘一个阵,相当于对矩阵做初等变换而初等变换不改变矩阵的秩所以命题成立
方程组Bx=0的解都是Cx=0的解,但是C可逆,所以Cx=0只有零解,所以Bx=0也只有零解,所以B的列向量线性无关
不一定,E+(-E)=O.再问:哈,谢谢!
证∵(A-E)(B-E)=E又:det(A-E)*det(B-E)=detE=1∴det(A-E)≠0∴A-E是可逆阵
AB*(AB)^(-1)=EAB^(-1)=B^(-1)A^(-1)AB*(AB)^(-1)=AB*B^(-1)*A^(-1)=A[B*B^(-1)]A^(-1)=E故:B*B^(-1)不等于0B*B
A^2B+AB^2=E即AAB+ABB=E所以A(A+B)B=E所以A可逆,B可逆所以A(A+B)=B^-1A+B=A^-1B^-1所以A+B可逆且(A+B)^-1=BA
由已知,B=E(i,j)A,其中E(i,j)是单位矩阵交换i,j行得到的初等矩阵则E(i,j)可逆,且E(i,j)^-1=E(i,j).因为|B|=|E(i,j)||A|=-|A|≠0,所以B可逆.且
因为(E+AB)A=A(E+BA)所以A=(E+AB)^-1A(E+BA)所以(E-B(E+AB)^-1A)(E+BA)=E所以E+BA可逆且(E+BA)^-1=E-B(E+AB)^-1A再问:能不能