设A为实对称矩阵,且 A2=0,证明A=0.
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 06:49:43
设矩阵A是n×n阶实对称矩阵,且A的平方等于0,证明A=0设A=[aij],其中i,j=1,2,...,n令C=A^2=A×A,依据矩阵乘法法则,C中主对角线上元素cii就是A的第i行和A第i列元素对
证明:因为A是对称矩阵所以A'=A.所以(B'AB)'=B'A'(B')'=B'AB所以B'AB是对称矩阵#
设λ是A的特征值,则λ^3-3λ^2+3λ-1=0λ=1所以,A与E相似存在可逆矩阵P,使得P^(-1)·A·P=E∴A=P·E·P^(-1)=E
假设 λ 为A的特征值,因为A3+A2+A=3E,所以 λ3+λ2+λ-3=0.即 (λ3-1)+(λ2-1)+(λ-1)=0,得(λ-1)(λ2+2λ+3)=0.解得,
首先,你应该知道下面几条:1).一个矩阵为对称矩阵,则此矩阵等于他的转置矩阵.因此,由条件A为对称矩阵,可知A=A^T2).要证明B^TAB是对称矩阵,就是要证明此矩阵等于他的转置矩阵,即证明B^TA
OK 这个有图片 请点击看大图
A2=A是什么?打错了吧,麻烦修改一下.如果是A^2=A即A^2-A=0写成特征值方程λ^2-λ=0所以A可能的特征值是,0和1因为A的秩是2,所以是1,1,0方法总结一下就是------------
因为|A|=|A^T|≠0所以A^T可逆A^-1=(A^T)^-1=(A^-1)^T所以A^-1为对称阵
两侧的括号省略设A=abbca,bc均为实数.A^2=AA=ababbc乘bc按定义:AA=a^2+b^2ab+bcab+bcb^2+c^2由已知:A^2=0,即各元素均为0.得:a^2+b^2=0,
因为A^2+5A=0所以A(A+5E)=0所以A的特征值只能是0或-5.而A是秩为2的3阶实对称矩阵所以A的特征值为0,-5,-5.再问:为啥A(A+5E)=0所以A的特征值只能是0或-5.再答:若a
证明:由A为实对称矩阵,则存在正交矩阵P满足P'AP=diag(a1,a2,...,an).[P'=P^-1]其中a1,a2,...,an是A的特征值.又因为|A|=a1a2...an
再答:判断矩阵B是不是对称的,就验证B的转置和它本身是否相等。再问:给力
设λ是A的特征值则λ^3-2λ^2+4λ-3是A^3-2A^2+4A-3E的特征值而A^3-2A^2+4A-3E=0,零矩阵的特征值只能是0所以λ^3-2λ^2+4λ-3=0.λ^3-2λ^2+4λ-
先对B做Cholesky分解B=L*L^T,然后对L^{-1}AL^{-T}做谱分解L^{-1}AL^{-T}=QDQ^T,S=LQ即可.
证明:设r是A的特征值,x是r对应的特征向量,则:x不等于零向量;Ax=rxAAx=A(rx)=r^2x=Ax=rx(r^2-r)x=0x不等于零向量,故r^2-r=0所以r=0或1
仅供参考,我觉得A就是对角矩阵diag(1,1,-1)A是实对称的,保证了A可以对角化,即与特征根1对应的特征空间W(1)是2维的,并且是W(-1)的正交补.R^3是W(1)和W(2)的直和(R表示实
由已知AT=A故(BTAB)T=BTATB=BTAB故它是对称矩阵
由已知,存在正交矩阵Q使得Q^TAQ=B因为A是对称矩阵所以A^T=A所以B^T=(Q^TAQ)^T=Q^TA^T(Q^T)^T=Q^TAQ=B所以B为对称矩阵.又因为A为实矩阵,则其特征值都是实数,
解:设a是A的特征值则a^3-3a^2+5a-3是A^3-3A^2+5A-3I=0的特征值所以a^3-3a^2+5a-3=0即(a-1)(a^2-2a+3)=0因为A是实对称矩阵,A的特征值都是实数所