设A为三阶方阵,|A|=2,求|A*|
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/23 23:24:17
|-3A|=(-3)^3*|A|=(-3)^4=81
(1)利用矩阵A的行列式等于其所有特征值的乘积:|A|=λ1λ2λ3即知λ3=-1.(2)逆矩阵的特征值就是原矩阵特征值的逆,所以A的逆矩阵的特征值为1/2,-1/3,-1.(3)用A*表示A的伴随.
由方程可得(A-I)(A+2I)=2I故A-I的逆为(A+2I)/2即A/2+I用的原理为A乘以A的逆等于单位矩阵
|-2A|=(-2)^3*|A|=-8*1/2=-4
应该是|A^-1-E|吧,由题,|A^-1-E|=|A^-1-A*A^-1|=|(E-A)*A^-1|=|E-A|*|A^-1|,因为1是A的特征值,所以有|E-A|=0,所以|E-A|*|A^-1|
AB=0,即B的每一列均为AX=0的解,现在对AX=0求解——对A进行初等行变换得112,从而满足x1+x2+2x3=0的解均为所求解.000000得AX=0的全部解为u(1,-1,0)+v(2,0,
|kA|=k^n|A|所以|-3A|=(-3)^n|A|=2*(-3)^n
因为A*=|A|A^(-1)=(1/2)A^(-1)所以|(2A)^(-1)-5A*|=|(1/2)A^(-1)-(5/2)A^(-1)|=|(-2)A^(-1)|=(-2)^3|A^(-1)|=-8
将A^2+2A-4E=0变化为A^2+2A-3E=E,即(A+3E)*(A-E)=E,因为(A-E)可逆,所以A+3E的逆方阵为(A-E)^-1
因为r(A+3E)=2所以|A+3E|=0所以-3是A的特征值所以A的全部特征值为-1,-2,-3所以A+4E的特征值为(λ+4):3,2,1所以|A+4E|=3*2*1=6.
若A=abcd则A*=d-b-ca对照可得A=(1-2-12)
A=A^2A^2-A=0A^2-2A=-AA(A-2E)=-AA-2E=-E(A-2E)*(-E)=E所以:(A-2E)^-1=-E
对可逆矩阵B,B*=|B|·B^(-1).因此(2A)*=|2A|·(2A)^(-1)=2³|A|·(2A)^(-1)=4(2A)^(-1).于是|(2A)^(-1)-(2A)*|=|-3(
A*=|A|A^(-1)=2A^(-1)由|A|=2知|A^(-1)|=1/2|3A*|=|6A^(-1)|=6³|A^(-1)|=6³×1/2=108A^(-1)表示A的逆矩阵
A*=|A|A^-1=2A^-1(A/4)^-1=4A^-1所以|(A/4)^-1+A*|=|4A^-1+2A^-1|=|6A^-1|=6^3|A^-1|=6^3/2=108
3A是在每个矩阵元素上乘以3,这样在计算行列式时,由于每个元素是原来的3倍,所以一个n阶方阵的行列式的值变为原来的3^n倍.在本题中,n=3,所以/3A/=3^3*(-2)=-18说的详细点,行列式是
|3A|=3^3*|A|=54|A^2|=|A|*|A|=4|A^(-1)|=|A|^(-1)=1/2
因为|kA|=k^3|A|,所以|3A²|=3^3*|A|²=9*(-2)²=9*4=36.
左边的连等式我们可以求出A的三个特征值-1,-2,-3/22A*的特征值是6,3,42A*-3E的特征值是3,0,1,所以2A*-3E的行列式是其三个特征值的乘积,所以是0.
|-2A|=(-2)^3*|A|=(-2)^4=16