设a为n阶矩阵使ax=0有非零解,则a必有一个特征值等于
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/23 22:39:58
"齐次线性方程组AX=0仅有非零解"应该改成"齐次线性方程组AX=0仅有零解"或者"齐次线性方程组AX=0有非零解"你得先掌握Ax的意义把A按列分块成A=[a1,...,an]那么Ax=x1a1+x2
因为r(A)=n-1所以AX=0的基础解系所含向量的个数为n-r(A)=n-(n-1)=1.又因为A的各行元素之和均为零,所以a=(1,1,...,1)'是AX=0的一个非零解故a=(1,1,...,
AX=0有非零解A的列向量组线性相关AX=0仅非零解A的列向量组线性无关应该是(B)正确再问:哦,不过为什么是这样的呢?再答:这是定理呀.A=(a1,...,an)x1a1+...+xnan=0有非零
AA的列向量组线性无关表示0的线性表出式唯一,而零解显然是一组解,所以仅有零解AX=0仅有零解假设A的列向量组线性相关则存在一组非零解矛盾
(C)A的列向量组线性无关即r(A)=n.再问:能详细点么再答:这是定理结论AX=0只有零解的充要条件是r(A)=n.
A为m×n矩阵,∴A有m行n列,且方程组有n个未知数 Ax=0仅有零解⇔A的秩不小于方程组的未知数个数n∵R(A)=n⇔A的列秩=n⇔A的列向量线性无关.矩阵A有n列,∴A的列向量组线性无关
A.A的列向量组线性无关记:A=(a1,a2,...,an)Ax=x1a1+x2a2+...+xnan=0Ax=0仅有零解《===》列向量:a1,a2,...,an线性无关.
|A|=0证明:设r为n阶矩阵A的秩,当r=n时,齐次线性方程组Ax=0仅有零解.但是n阶非零矩阵B的每一个列向量都是齐次线性方程组Ax=0的解,所以Ax=0有非零解,则r
|A|=0因为B非零,B的列向量都是AX=0的解,所以AX=0有非零解.所以|A|=0.
设n元非齐次线性方程组AX=B有解,其中A为(n+1)×n矩阵,则|(A|B)|=0再问:怎么算的,为什么?再答:AX=B有解,所以A的秩等于(A|B)的秩,所以(A|B)不是满秩的。
Ax是一列向量,(Ax)^T(Ax)是Ax与Ax的内积,即Ax的长度的平方也等于Ax各分量平方之和.
B为n阶非零矩阵,若B的每一个列向量都是齐次线性方程组Ax=0的解说明齐次线性方程组Ax=0有非零解,故其系数行列式|A|=0.(n元齐次线性方程组当方程的个数等于未知数的个数时,方程组有非零解的充要
将题补全.设A为n阶矩阵,秩(A)=n-1,X1,X2是齐次线性方程组Ax=0的两个不同的解,则Ax=0的通解是kX1或kX2(要求X1或X2不等于零,即不能是零解),其中k是任意数.
1、因为A*A'('表示转置)为n*n的矩阵,而一个矩阵的秩必≤它的行数或列数,所以r(A*A')≤n可以直接得到.2、需要说明的是,r(n)中的n是什么?你可能看错了,一个数是不必算秩的(一个非0数
线性方程组AX=0有非零解r(A)
|A|=0B的每一个列向量都是齐次线性方程组Ax=0的解所以Ax=0有非零解,所以系数矩阵行列式为0
因为A(b1,b2...bn)=0得R(A)+R(B)0得到R(A)
为n-1,说明解为n-n+1=1个Ax=0的通解可以表示为km或者kn再问:那答案为何写成k(m-n)呢再答:答案蛋疼三种方法都可以你写成k(m+n)也对注:如果m,n是非齐次方程组的解的话,那答案就
大家都不帮你我来帮你因为AA*=|A|E,两边同时乘A逆,有A*=|A|A逆,两边同时取行列式,有|A*|=||A|A逆|=|A|^(N)|A逆|又因为|A逆|=|A|分之一(这个就不用给你推了吧.A
证明:显然有:Ax=0的解必然也是A'Ax=0的解.下面证:若A'Ax=0,那么Ax=0x是n维列向量,A'Ax是n维列向量且A'Ax=0,x'是n维行向量.方程A'Ax=0两边左乘x'得:x'A'A