设A为n阶矩阵,则R(A-I) R(A E)大于等于n
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 04:49:51
设一分块矩阵C上块为A下块为BCx=0的解就是Ax=0与Bx=0的公共解r(C)
可以的是R(A)+R(A-E)=n提示:A*(A-E)=0所以(A-E)是AX=0的解
(D)正确.联立方程组Ax=0Bx=0则系数矩阵的秩r(A;B)
证明:设A,B为同阶方阵,a1,a2...ar是A的极大线性无关向量组,则:R(A)=r,同理,设b1,b2,..bs为B的极大线性无关向量组,则:R(B)=s而A+B与A和B为同阶方阵,其极大线性无
(1)r(A)=nAX=0X只有零解所以B就是零解组成的矩阵,即零矩阵(2)AB=AA(B-E)=0由(1)知道(B-I)=0B=I
∵C是n阶可逆矩阵∴C可以表示成若干个初等矩阵之积,即C=P1P2…Ps,其中Pi(i=1,2,…,s)均为初等矩阵.而:B=AC,∴B=AP1P2…Ps,即B是A经过s次初等列变换后得到的,又初等变
由于C可逆,所以r(AC)=r(A)即有r=r1故(C)正确.
1证明:若矩阵A^2=I,A不等于I,则A+I不可逆.证明:首先因为A与A可乘(条件中由A^2),所以A是方阵(不妨设为n阶).因为A^2=I,所以(A+I)(A-I)=O,因为A≠I,所以A-I≠O
如果知道Jordan标准型的话就显然了.如果不知道的话就证明A^{n+1}x=0和A^nx=0同如果A非奇异则显然成立,否则利用n-1>=rank(A)>=rank(A^2)>=...>=rank(A
可逆等价于满秩从Gauss消元法也可得r(A)=n
(结论应该是rank(A)+rank(A-I)=n,否则是错的.例:取A=I,则A^2=I=A,但rank(A)+rank(A+I)=rank(I)+rank(2I)=n+n=2n)证法一:令U={x
1.直接用定义验证x非零时x^TBx>0,当然也可以看特征值2.A=C^TC,那么AB合同于CBC^{-1},然后看特征值
R(A)=n时,R(A*)=nR(A)=n-1时,R(A*)=1R(A)
只能选B小于m再问:����ϸ����һ����лл再答:û����ϸ���ͣ������Ŀ�Dz��걸�ģ�ֻ��ѡB������R(AB)n����Ϊ����m>nʱA�������صģ�B���
题中少写一个加号,可按下图证明.经济数学团队帮你解答,请及时采纳.谢谢!
1)由AB=0,得R(A)+R(B)《r.又R(B)=r,故R(A)《0.显然R(A)》0.故R(A)=0既A=02)如果AB=B,则AB-B=0.即(A-E)B=0,R(B)+R(A-E)《r.又R
(C)正确可逆矩阵(即非奇异矩阵)可表示成初等矩阵的乘积初等矩阵乘矩阵A相当对A进行初等变换而初等变换不改变矩阵的秩所以(C)正确.