设A为n阶矩阵,则R(A-I) R(A E)大于等于n

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 04:49:51
设A为n阶矩阵,则R(A-I) R(A E)大于等于n
设A为m*n矩阵,B为k*n矩阵,且r(A)+r(B)

设一分块矩阵C上块为A下块为BCx=0的解就是Ax=0与Bx=0的公共解r(C)

设A,B均为n阶矩阵,r(A)

(D)正确.联立方程组Ax=0Bx=0则系数矩阵的秩r(A;B)

设A为n阶方阵,E为n阶单位矩阵,证明R(A+E)+R(A-E)》n,

证明:设A,B为同阶方阵,a1,a2...ar是A的极大线性无关向量组,则:R(A)=r,同理,设b1,b2,..bs为B的极大线性无关向量组,则:R(B)=s而A+B与A和B为同阶方阵,其极大线性无

设A为m*n矩阵,B为n阶矩阵,且r(A)=n.求证:(1)如果AB=O,则B=O;(2)如果AB=A,则B=I.

(1)r(A)=nAX=0X只有零解所以B就是零解组成的矩阵,即零矩阵(2)AB=AA(B-E)=0由(1)知道(B-I)=0B=I

设A是m×n矩阵,C是n阶可逆矩阵,矩阵A的秩为r,矩阵B=AC的秩为r1,则(  )

∵C是n阶可逆矩阵∴C可以表示成若干个初等矩阵之积,即C=P1P2…Ps,其中Pi(i=1,2,…,s)均为初等矩阵.而:B=AC,∴B=AP1P2…Ps,即B是A经过s次初等列变换后得到的,又初等变

设n阶矩阵A满足(A-I)(A+I)=O,则A为可逆矩阵

1证明:若矩阵A^2=I,A不等于I,则A+I不可逆.证明:首先因为A与A可乘(条件中由A^2),所以A是方阵(不妨设为n阶).因为A^2=I,所以(A+I)(A-I)=O,因为A≠I,所以A-I≠O

设A为n阶矩阵,证明r(A^n)=r(A^(n+1))

如果知道Jordan标准型的话就显然了.如果不知道的话就证明A^{n+1}x=0和A^nx=0同如果A非奇异则显然成立,否则利用n-1>=rank(A)>=rank(A^2)>=...>=rank(A

设a为n阶可逆矩阵,则r(A)=?

可逆等价于满秩从Gauss消元法也可得r(A)=n

设A为n阶矩阵,满足A2=A,设A为n阶矩阵,满足A2=A,试证:r(A)+r(A+I)=n

(结论应该是rank(A)+rank(A-I)=n,否则是错的.例:取A=I,则A^2=I=A,但rank(A)+rank(A+I)=rank(I)+rank(2I)=n+n=2n)证法一:令U={x

关于正定矩阵的 急设A为n阶实对称矩阵 证明 B=I+A的平方 为正定矩阵设A为n阶正定矩阵,AB为是对称矩阵,则AB为

1.直接用定义验证x非零时x^TBx>0,当然也可以看特征值2.A=C^TC,那么AB合同于CBC^{-1},然后看特征值

设A为n阶矩阵,R(A)

R(A)=n时,R(A*)=nR(A)=n-1时,R(A*)=1R(A)

设A为m×n阶矩阵,B是n×m矩阵,则r(AB)是

只能选B小于m再问:����ϸ����һ����лл再答:û����ϸ���ͣ������Ŀ�Dz��걸�ģ�ֻ��ѡB������R(AB)n����Ϊ����m>nʱA�������޹صģ�B���

证明:设n阶矩阵A满足(A—I)(A I)则A为可逆矩阵

题中少写一个加号,可按下图证明.经济数学团队帮你解答,请及时采纳.谢谢!

设A为r*r阶矩阵,B为r*n阶矩阵且R(B)=r,证明:

1)由AB=0,得R(A)+R(B)《r.又R(B)=r,故R(A)《0.显然R(A)》0.故R(A)=0既A=02)如果AB=B,则AB-B=0.即(A-E)B=0,R(B)+R(A-E)《r.又R

设P为m阶非奇异矩阵,Q为n阶非奇异矩阵,A为m×n阶矩阵,则() R(PA)=R(A),R(AQ)≠R(A

(C)正确可逆矩阵(即非奇异矩阵)可表示成初等矩阵的乘积初等矩阵乘矩阵A相当对A进行初等变换而初等变换不改变矩阵的秩所以(C)正确.