设A为n阶方阵,k为实数,则KA的绝对值
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 12:17:43
(E-A)(E+A+A^2+...+A^K-1)=E+A+A^2+...+A^K-1-(A+A^2+...+A^K)=E-A^k=E所以:E-A可逆,并且(E-A)^-1=E+A+A^2+...+A^
A可逆,|A|≠0,A×A^(-1)=E[n阶单位矩阵].∴|A×A^(-1)|=|A|×|A^(-1)|=|E|=1即|A|×|A^(-1)|=1.||A^(-1)|=1/|A|=|A|^(-1).
A^k=O.则A≠II-A^k=(I-A)*(I+A+A^2+A^3+...A^K-1)而A^k=O则(I-A)*(I+A+A^2+A^3+...A^K-1)=I则由可逆矩阵A*A^(-1)=A^(-
可以.考虑矩阵的秩,有:R(AB)≤R(A),则n=R(E)=R(A^K)≤R(A)≤n,R(A)=n所以A是非奇异阵,可以对角化.
n阶方阵在复数域上有几个特征值呢?一定是n个,因为特征多项式|aE-A|是关于a的n次多项式,必有n个根.总之,计入复根,则A必有n个特征值.接下来如果特征值是a,那么由定义定有AX=aX于是a^kX
需两个知识点:1.零矩阵的特征值只有零2.若λ是A的特征值,g(x)是x的多项式,则g(λ)是g(A)的特征值本题目的证明:设λ是A的特征值,则λ^k是A^k的特征值因为A^k=0,而零矩阵的特征值只
A的k次幂等于0矩阵指某个正整数kA^k=0设A的特征值λ则:Ax=λx(x≠0为特征向量)A^(k)x=0=λ^(k)x=》λ=0
这是方阵行列式的基本性质kA是A中所有元素都乘以k取行列式|kA|:每一行都有一个k公因子,根据行列式的性质,每行提出一个k所以:|kA|=k^n|A|
因为A~B设B=PAP-1则B^k=(PAP-1)^k=(PAP-1)(PAP-1)...(PAP-1)=PA(P-1P)A(P-1P)...AP-1=P(A^K)P-1所以A^k~B^k
证:∵rank(A)=1,A为n阶方阵∴A=αβ'('表示转置)∴A²=αβ'αβ'=α(β'α)β'令k=β'α,∴A²=kαβ'=kA结论得证!
对!秩为n-1,说明方程组只有一个自由未知量,基础解系中应该只有一个向量(且是非0向量).现在a1,a2是齐次线性方程组Ax=0的两个不同的解向量,其中可能有一个为0向量,但这两个向量的差绝对不会是0
因为AA^(-1)=E两边取行列式得|AA^(-1)|=|E|=1因为乘积的行列式等于行列式的乘积所以|A||A^(-1)|=|E|=1由A可逆,得|A^(-1)|=1/|A|=|A|^(-1).你那
∵AA*=A*A=|A|E,∴A*=|A|A-1,从而:(kA)*=|kA|•(kA)-1=kn|A|•1kA−1=kn−1|A|A−1=kn−1A*,故选:B.
要多说明一点,你取的k是最小的使得A^k=0的自然数k.等等-由于A^(k-1)不恒为O,所以X=O-好像有问题...我想一下.这句话应该是对的,但是我要证明的话要用到Jordan形式...(就是只有
选C,这个时候提取系数的话需要阶数的次方.
kA,是每个元素都乘以k所以取行列式和每行都可以提取k,从而选C,(k∧n)|A|
由于(E+A+A^2+,+A^(k-1))(E-A)=(E+A+...+,+A^(k-1))-(A+...+,+A^k)=E-A^k=E(注意那个式子的抵消规律)所以命题成立
因为R(A-tE)=n所以|A-tE|≠0所以t不是矩阵A的特征值再问:为什么R(A-tE)=n时|A-tE|≠0啊能详细解答下吗再答:知识点:n阶方阵A的秩等于n的充分必要条件是|A|≠0.
证明:设A有特征值S,则A^k的特征值为S^k.(在线性代数的习题里有此类定理).由A^k=O可知:S^k=0(零矩阵的特征值只有0).故S=0,可知I-A的特征值只有1,故|I-A|=1(对应的行列
主要工具都是|MN|=|M|*|N|(1)kA=(kE)A,所以|kA|=|kE|*|A|.kE是n阶对角阵,对角元全为k,所以行列式|kE|=k*k*...*k=k^n.所以|kA|=k^n|A|(