设A为n阶方阵,At是它的转置矩阵,证明A At为对称矩阵

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 21:27:27
设A为n阶方阵,At是它的转置矩阵,证明A At为对称矩阵
设n阶方阵A的元素全为1,则A的n个特征值是?

显然0是它的特征值,并且以0为特征值的基础解系有n-1个,故有0的重数是n-1;又因为每行都有n个1,考虑到(n-1)*1+(1-n)=0所以它还有特征值n.其实对于后面一个特征值,你也可以看看特征值

设A为N阶方阵,A的m次方=0,m是自然数,则A的特征值为

A的m次方的特征值=A的特征值的m次方,故先求A的m次方的特征值.既然A的m次方=0,0矩阵的特征值当然是0,故A的m次方的特征值为0.故A的特征值=0.

设A是n阶方阵,其秩r

对再答:行秩等于列秩等于矩阵的秩再答:行向量组的秩是它最大线性无关组中向量的个数

设A为n阶方阵,证明当秩(A)

这个很简单啊,r(A)

设λ 是n阶方阵A的特征值,证明:Α+2E的特征值为λ+2.

λ是n阶方阵A的特征值,则:Ax=λx,其中x是λ对应的特征向量.考察(A+2E)x(A+2E)x=Ax+2Ex=λx+2x=(λ+2)x所以Α+2E的特征值为λ+2,同时可以看到,对应的特征向量不变

设A为n阶方阵,k是常数,证明:|kA|=k的n次方|A|

这是方阵行列式的基本性质kA是A中所有元素都乘以k取行列式|kA|:每一行都有一个k公因子,根据行列式的性质,每行提出一个k所以:|kA|=k^n|A|

线性代数题目:设A是n阶方阵,且|A|=4,则|(4AT)-1|=

|(4A^T)^-1|=|(1/4)(A^T)^-1|=(1/4)^n(1/|A^T|)=1/4^n(1/|A|)=1/4^(n+1)

设n阶方阵A的各列元素之和为5,则A的一个特征值是

A的一个特征值是5A的特征值是|λE-A|=0的根,考虑方阵λE-A,他的各列元素之和是λ-5因为λE-A是把A取负再把每一列的某个元素加上一个λ.这样根据行列式的性质,通过变换:把第2至第n行各加到

:设A是元素为整数的n阶方阵,则存在元素为整数的n阶方阵B,使得AB=E的充分必要条件

存在元素为整数的n阶方阵B,使得AB=E,即方阵A存在逆矩阵.一个方阵,存在逆矩阵的充分必要条件是行列式不为0

几代:设α是n维列向量(n > 1),则n阶方阵A = ααT 的行列式|A|的值为?

1+xa≠0,可以知道aa'(a‘表示转置)也不会为0,而r(aa')<=r(a)<=1这说明aa‘的秩为1.这样aa'的特征值正好是n-1个0,有一个不

设A为n阶方阵,且A是可逆的,证明det(adjA)=(detA)的(n-1)次方

有个重要关系式:AA*=det(A)E,A*是A的伴随阵.取行列式得det(A)det(A*)=det(A)^ndet(E)=det(A)^n,由于det(A)不等于0,因此有det(A*)=(det

设A为n阶非零实方阵,A*是A的伴随矩阵,AT是A的转置矩阵,当A*=AT时,证明|A|≠0 后面的一部分解答没看懂

|A|E=AA^T,那么|A|E的第i行第i列的元素就是A的第i行元素与A^T的第i列的元素逐个相乘之和,【逐个相乘就是A的第i行第1列的元素与A^T的第i列第1行的元素相乘,A的第i行第2列的元素与

设A是n阶方阵,且A的平方等于A,证明A+E可逆

假设A+E不可逆,则|A+E|=0所以-1是A的一个特征值设ξ是属于-1的一个特征向量则A^2ξ=A(-ξ)=-Aξ=ξ但A^2=A所以A^2ξ=Aξ=-ξ矛盾

设A为n阶方阵,怎样证明A+A的转置为对称矩阵?A-A的转置为反对称矩阵?

设B=A+A',则Bij=Aij+Aji=Bji,知B为对称矩阵另一个类似

设A是(n≥2)阶方阵,A*是A的伴随矩阵.证明:

1)r(A)=n等价于det(A)≠0等价于det(A*)=1等价于A*可逆等价于r(A*)=n2)

设A*为n阶方阵A的伴随矩阵,则AA*=A*A=

这是一个基本公式,AA*=A*A=|A|E,其中E是单位阵.经济数学团队帮你解答,请及时采纳.

设a,b均为n阶方阵,则必有

这是个定理或性质.它的证明比较繁琐,若学过Laplace展开还好一点.记住这个结论就行了,不必深究它的证明!