设a为n阶实对称正交矩阵,且1为a的r重特征值
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/23 19:20:06
A^(-1)=A^T|A^(-1)B^T|=|A^TB^T|=|(BA)^T|=|BA|=-1
正定则顺序主子式都大于0所以|A|≠0,|B|≠0所以|AB|=|A||B|≠0所以AB可逆所以(C)正确.再问:这样呀,那其它答案为什么不正确,或者为什么不能确定呢?
证:因为正交矩阵的行列式是正负1再由|AB|
证明:因为A是对称矩阵所以A'=A.所以(B'AB)'=B'A'(B')'=B'AB所以B'AB是对称矩阵#
证明:A为实对称矩阵,则币可以对角化,令Aa=xa则A^2=Ax^2a^2=xax(x-1)a=0a≠0,x=0,1则A矩阵的特征值只能为0,1所以r(A)=r(=特征值非0的个数所以
正交矩阵定义:AA'=E(E为单位矩阵,A'表示“矩阵A的转置矩阵”.)或A′A=E,则n阶实矩阵A称为正交矩阵对称矩阵A'=A所以A方=E,命题成立
直接验证.a是单位列向量,所以aTa=1AT=ET-2(aaT)T=E-2aaT所以是对称阵.ATA=(E-2aaT)(E-2aaT)=E-2aaT-2aaT+4aaTaaT=E这说明A是正交阵.
【1】令P,Lambda分别为特征矩阵和特征值矩阵,则.【2】因为P是个正交矩阵,所以PP^-1是个常数,
首先,你应该知道下面几条:1).一个矩阵为对称矩阵,则此矩阵等于他的转置矩阵.因此,由条件A为对称矩阵,可知A=A^T2).要证明B^TAB是对称矩阵,就是要证明此矩阵等于他的转置矩阵,即证明B^TA
OK 这个有图片 请点击看大图
由于A,B为正交矩镇,AA^T=E,BB^T=E因此A^T(A+B)B^T=B^T+A^T=(A+B)^T所以|A^T(A+B)B^T|=|(A+B)^T|=|A+B|即|A^T||(A+B)||B^
由于A是对称矩阵,因此存在正交矩阵T使得T^(-1)AT为对角矩阵,其中对角线上的元素为A的所有特征值,因此只要证A的特征值只有0和1即可由于A^2=A,所以A的特征是0或1,证毕
B^{-1}Q^TAQB=(QB)^{-1}A(QB)这是一个相似变换
再答:判断矩阵B是不是对称的,就验证B的转置和它本身是否相等。再问:给力
(B-1AB)T=BTAT(B-1)T由于AT=A,B-1=BT,(B-1)T=(BT)T=B原式=B-1AB故B-1AB是对称矩阵
这个(C)正确因为A,B正定所以|A|>0,|B|>0所以|AB|=|A||B|>0所以AB可逆.
由已知AT=A故(BTAB)T=BTATB=BTAB故它是对称矩阵
由已知,存在正交矩阵Q使得Q^TAQ=B因为A是对称矩阵所以A^T=A所以B^T=(Q^TAQ)^T=Q^TA^T(Q^T)^T=Q^TAQ=B所以B为对称矩阵.又因为A为实矩阵,则其特征值都是实数,