设A为n阶可逆矩阵,满足A^2-3A-2E=0,则A-1=

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/23 18:27:25
设A为n阶可逆矩阵,满足A^2-3A-2E=0,则A-1=
设n阶方正A,B乘积AB为可逆矩阵,证明A,B都是可逆矩阵

AB的行列式等于A的行列式与B的行列式之积,AB为可逆矩阵,故AB的行列式不等于零,于是A的行列式与B的行列式均不等于零,故A,B都是可逆矩阵.

设n阶矩阵A满足A^2=A,求A的特征值,并证明E+A可逆.

设j是的一特征值,则有X,使得AX=jX.而又有A^2×X=A(AX)=A(jX)=j(AX)=j^2×X因为A^2=A,故有:j^2×X=j×X即j^2=j求得j=0j=1由A^2=A有A^2-A-

设n阶矩阵A满足A^2+A-3i=0 证明矩阵A-2I可逆,并求(A-2i )^-1

注:i应该写成大写的I,但看起来象1,也可以记为E.因为A^2+A-3E=0所以A(A-2E)+3(A-2E)+3E=0即有(A+3E)(A-2E)=-3E.所以A-2E可逆,且(A-2E)^-1=(

设n阶方阵A满足A^2-A+E=0,证明A为可逆矩阵,并求A^-1的表达式?

证明:因为A^2-A+E=0所以A(E-A)=E所以A可逆,且A^-1=E-A补充:这是个定理,教材中应该有的:若AB=E,则A,B可逆,且A^-1=B,B^-1=A证明很简单.因为AB=E两边求行列

设n阶方阵A满足A^3+2A-3E=0,证明矩阵A可逆,并写出A的逆矩阵的表达式.

因A^3+2A-3E=0变形A^3+2A=3E即A[1/3(A^2+2E)]=E也就是存在B=1/3(A^2+2E)使得AB=BA=E按定义知A可逆且逆矩阵A^(-1)=1/3(A^2+2E)

设n阶矩阵A满足A^2-2A+2i=0 证明矩阵A-3I可逆,并求(A-3i )^-1

两边同时减5i得A^2-2A-3i=-5i(a-3i)(a+i)=-5i(-1/5(a+i))(a-3i)=i所以a-3i的逆矩阵是-1/5(a+i)因为有逆矩阵所以可逆

设n阶矩阵A满足A(的平方)-A-2E=0,证明A及A+2E都可逆,并求出这两个逆矩阵

移项:A^2=A+2E两边同乘以A^(-2)就得到:E=(A+2E)^A*(-2)

设A、B均为n阶可逆矩阵,证明(A*)*= |A|^n-2·A

因为A、B均为n阶可逆矩阵所以(A*)*=(|A|A^(-1))*=|A|^n-2(A^(-1))*=|A|^n-1(A*)^(-1)=|A|^n-1(|A|A^(-1))^(-1)=|A|^n-1A

设n阶矩阵A满足A^2-2A+2i=0 证明矩阵A-3I可逆,并求(A-3i )^-1

A^2-2A+2I=0A^2-3A+A-3I=-5IA(A-3I)+(A-3I)=-5I(A+I)(A-3I)=-5I[-1/5(A+I)](A-3I)=I因此-1/5(A+I)是A-3I的逆矩阵因此

设A,B为N阶矩阵,满足2(B^-1)A=A-4E,E为N阶单位矩阵,证明:B-2E为可逆矩阵,并求它的逆矩阵

证明:由2(B^-1)A=A-4E得2A=BA-4B所以有(B-2E)(A-4E)=8E.所以B-2E可逆,且(B-2E)^-1=(A-4E)/8.

设A为n阶方阵,e为n阶单位矩阵,满足方程A²-3A-E=0,证明A可逆

A²-3A-E=0A^2-3A=EA(A-3E)=E因此A可逆,且其逆矩阵为A-3E

设A、B均为n阶可逆矩阵,则A+B也可逆?

不一定,E+(-E)=O.再问:哈,谢谢!

设n阶方阵A和B满足条件A+B=AB,证明A-E为可逆矩阵

证∵(A-E)(B-E)=E又:det(A-E)*det(B-E)=detE=1∴det(A-E)≠0∴A-E是可逆阵

设n阶矩阵A满足(A-I)(A+I)=O,则A为可逆矩阵

1证明:若矩阵A^2=I,A不等于I,则A+I不可逆.证明:首先因为A与A可乘(条件中由A^2),所以A是方阵(不妨设为n阶).因为A^2=I,所以(A+I)(A-I)=O,因为A≠I,所以A-I≠O

设n阶方阵A,B的乘积AB为可逆矩阵,证明A,B都是可逆矩阵

AB*(AB)^(-1)=EAB^(-1)=B^(-1)A^(-1)AB*(AB)^(-1)=AB*B^(-1)*A^(-1)=A[B*B^(-1)]A^(-1)=E故:B*B^(-1)不等于0B*B

设A为n阶可逆矩阵,则

C不对,因为此时只能用初等行变换才有相应结果

设A,B为n阶矩阵,如果E+AB可逆,证明E+BA可逆.

因为(E+AB)A=A(E+BA)所以A=(E+AB)^-1A(E+BA)所以(E-B(E+AB)^-1A)(E+BA)=E所以E+BA可逆且(E+BA)^-1=E-B(E+AB)^-1A再问:能不能

证明:设n阶矩阵A满足(A—I)(A I)则A为可逆矩阵

题中少写一个加号,可按下图证明.经济数学团队帮你解答,请及时采纳.谢谢!