设A为n阶可逆矩阵,且 A =-1 n,则 A-1 =

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/23 19:11:00
设A为n阶可逆矩阵,且 A =-1 n,则 A-1 =
线性代数矩阵题设A为n阶矩阵,A的k次方=0,k大于1为整数,证明En-A可逆,且(En-A)的逆矩阵=En+A+A的平

我们知道,如果矩阵B和C成立BC=En,则B和C互为逆矩阵,从而当然B和C都是可逆的.用这个知识,本题只要证明(En-A)*(En+A+A的平方+……+A的k-1次方)=En即可,这很简单可得.

设A,B为n阶矩阵,且E-AB可逆,证明E-BA

E-AB可逆,则设其逆为C有(E-AB)C=E->B(E-AB)CA=BA->BCA-BABCA-BA+E=E(两边多配了一个E)->(E-BA)BCA+(E-BA)=E->(E-BA)(BCA+E)

设A B 为n阶矩阵,且A B AB-I 可逆 证明A-B的逆 可逆

最有问题,能有反例,比如令A=B=0就满足AB=A-B=0但AB=0,不可逆

设A B为n阶矩阵,且A B AB-I可逆,证明:A-(B的逆)可逆

AB-I=AB-(B^-1)*B=(A-B^-1)*B所以上式两边都右乘(AB-I)^-1,得到I=(A-B^-1)*B*(AB-I)^-1=(A-B^-1)*(B*(AB-I)^-1)那(A-B^-

大学线性代数可逆矩阵设A,B均为n阶矩阵.证明:分块矩阵(A B)是可逆矩阵当且仅当A+B与A-B均为可逆矩阵B A

证明(AB)是可逆矩阵?没弄错么这样就不是方阵了何来可逆.再问:我下面写了第二行是BA啊再答:AB列变换A-BB行变换A-BBBAB-AA0A+B所以其行列式为|A-B||A+B|A+B与A-B均为可

设A,B均为n阶矩阵.证明:分块矩阵AB BA是可逆矩阵当且仅当A+B A-B均为可逆矩阵

利用行列式的性质|ABBA|=|A+BBA+BA|=|A+BB0A-B|=|A+B||A-B|再根据矩阵可逆的充要条件是行列式不为0可知命题成立.

设A是n阶非零实矩阵,且A*=AT,证明:A是可逆矩阵

AA^*=|A|E说明AA^*的第一行第一列元素等于|A|E的第一行第一列的元素,而|A|E的第一行第一列的元素为|A|,而AA^*的第一行第一列的元为a11^2+a12^2+...+a1n^2,其他

设A、B均为n阶可逆矩阵,则A+B也可逆?

不一定,E+(-E)=O.再问:哈,谢谢!

证明,设A为n阶可逆矩阵,A*与A的伴随矩阵,证(A*)=n

因为A的伴随矩阵的行列式等于A的行列式的n-1次方所以A*的行列式不为零.则得到(A*)=n再问:我可以再问你几个吗再答:嗯

设A为n阶可逆矩阵,A*是A的伴随矩阵,证明|A*|=|A|n-1

1.A不可逆|A|=0AA*=|A|E=O假设|A*|≠0则A=O显然A*=O,与假设矛盾,所以|A*|=0即|A*|=|A|n-1=02.A可逆|A|≠0AA*=|A|EA*也可逆又|AA*|=||

设A、B均为n阶可逆矩阵,证明存在可逆矩阵P、Q,使得PAQ=B

知识点:n阶可逆矩阵等价于n阶单位矩阵E.因为A,B可逆,所以存在可逆矩阵P1,P2,Q1Q2满足P1AQ1=EP2BQ2=E所以P1AQ1=P2BQ2所以P2^-1P1AQ1Q2^-1=B令P=P2

设A为n阶可逆矩阵,E为n阶单位矩阵,刚A-1[A,E]= _______

按分块矩阵的乘法A^-1[A,E]=[A^-1A,A^-1E]=[E,A^-1].(*)教材中有这样的结论:n阶方阵A可逆的充分必要条件是A可以表示成有限个初等矩阵的乘积.当A可逆时,其逆矩阵A^-1

设A,B为n阶可逆矩阵,且E+BA^-1可逆,证明E+A^-1B可逆,并求出其逆矩阵表示式.

因为:A^-1[(E+BA^-1)AB^-1]B==A^-1[AB^-1+E]B=E+A^-1B由于可逆阵之积仍为可逆阵,故知:(E+A^-1B)可逆,(AB^-1+E)可逆(按照积取逆的定理:(AB

设n阶矩阵A满足(A-I)(A+I)=O,则A为可逆矩阵

1证明:若矩阵A^2=I,A不等于I,则A+I不可逆.证明:首先因为A与A可乘(条件中由A^2),所以A是方阵(不妨设为n阶).因为A^2=I,所以(A+I)(A-I)=O,因为A≠I,所以A-I≠O

设A为n阶可逆矩阵,则

C不对,因为此时只能用初等行变换才有相应结果

设A为N阶对称矩阵,B为N阶可逆矩阵,且B-1=BT,证明B-1AB是对称矩阵

(B-1AB)T=BTAT(B-1)T由于AT=A,B-1=BT,(B-1)T=(BT)T=B原式=B-1AB故B-1AB是对称矩阵

设n阶方阵A可逆,A^*为A的伴随矩阵,证明|A^*|=|A|^n-1

A乘以A^*等于对角线全是|A|的对角矩阵.所以|A*A^*|=|A|*|A^*|=|A|^n.所以|A^*|=|A|^n-1

设N阶矩阵A可逆,A*为A的伴随矩阵,试证A*也可逆,且(A*)逆矩阵=1/[A]乘以A 万分感激

AA*=!A!E不等于0故:A*可逆.A*A/!A!=E(A*)^(-1)=A/!A!!表示绝对值.

关于可逆矩阵的问题(1)A,B,C为n阶矩阵,且AB=BC=CA=E,则A^2+B^2+C^2=还有一题:设n阶矩阵A满

AB=AC=BC=E,可知BA=CA=CB=EA^2+B^2+C^2=(A^2+B^2+C^2)BC=A(AB)C+BB(BC)+C(CB)C=E+BB+CC=(E+BB+CC)AC=E+B(BA)C