设A为n阶可逆矩阵,a1,a2,...as,都为n维非零向量,且 aiTATAa

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 09:54:17
设A为n阶可逆矩阵,a1,a2,...as,都为n维非零向量,且 aiTATAa
设n阶方正A,B乘积AB为可逆矩阵,证明A,B都是可逆矩阵

AB的行列式等于A的行列式与B的行列式之积,AB为可逆矩阵,故AB的行列式不等于零,于是A的行列式与B的行列式均不等于零,故A,B都是可逆矩阵.

设A是N阶方阵,若A2=A,且A不等于E,证A不是可逆矩阵

反证法若A是可逆矩阵,则A×A逆=EA=A×A×A逆=A×A逆=E矛盾

设A,B均为n阶矩阵.证明:分块矩阵AB BA是可逆矩阵当且仅当A+B A-B均为可逆矩阵

利用行列式的性质|ABBA|=|A+BBA+BA|=|A+BB0A-B|=|A+B||A-B|再根据矩阵可逆的充要条件是行列式不为0可知命题成立.

设n阶可逆矩阵A的一个特征值是-3,则矩阵(1/3*A2)-1 必有一个特征值为_________.

有如下定理:若可逆阵A有特征值k(k一定不为0)则A逆有特征值1/k,A^2特征值k^2.(mA)有特征值mk.(以上结论容易证明)由此,本题:A的特征值-3,A^2的特征值9,1/3*A^2的特征值

设A、B均为n阶可逆矩阵,则A+B也可逆?

不一定,E+(-E)=O.再问:哈,谢谢!

设a1,a2为n维列向量,A为n阶正交矩阵,证明[Aa1,Aa2]=[a1,a2]

因为A为正交矩阵所以A^TA=E.所以[Aa1,Aa2]=(Aa1)^T(Aa2)=a1^TA^TAa2=a1^Ta2=[a1,a2]

设a1,a2为n维列向量,A为n阶正交矩阵,证明:(1)[Aa1,Aa2]=[a1,a2] (2){Aa1}={a1}

1、=(Aa1)^T*(Aa2)=(a1)^T*A^T*A*a2=(a1)^T*(a2)=.2、取a2=a1,由1有||Aa1||^2=||a1||^2.开方得结论.

设a1,a2,a3,...an是n维列向量空间Rn的一个基,A是任意一个n阶可逆矩阵,证明:n维列向量组

证:设k1Aa1+k2Aa2+...+knAan=0则A(k1a1+k2a2+...+knan)=0因为A可逆,等式两边左乘A^-1得--这一步是关键k1a1+k2a2+...+knan=0又由已知a

设A为n阶矩阵,a1,a2,...an为n维列向量,an!=0,Aa1=a2,...Aan=0,求证

先用线性无关的定义验证a1,a2,...,an线性无关然后记X=[a1,a2,...,an],那么X是非奇异矩阵且满足X^{-1}AX=J,其中J=0000010000010000010000010是

设a1,a2,...,an是n维列向量空间R^n的一个基,A是任意一个n阶可逆矩阵,证明:n维列向量组Aa1,Aa2..

在n维欧氏空间中,任意n个线性无关的向量都可以作为空间的一组基在本题中,可逆矩阵的n个列向量线性无关,故可作为一组基

设A为n阶可逆矩阵,A*是A的伴随矩阵,证明|A*|=|A|n-1

1.A不可逆|A|=0AA*=|A|E=O假设|A*|≠0则A=O显然A*=O,与假设矛盾,所以|A*|=0即|A*|=|A|n-1=02.A可逆|A|≠0AA*=|A|EA*也可逆又|AA*|=||

设A、B均为n阶可逆矩阵,证明存在可逆矩阵P、Q,使得PAQ=B

知识点:n阶可逆矩阵等价于n阶单位矩阵E.因为A,B可逆,所以存在可逆矩阵P1,P2,Q1Q2满足P1AQ1=EP2BQ2=E所以P1AQ1=P2BQ2所以P2^-1P1AQ1Q2^-1=B令P=P2

设A,B为N阶方阵,E为单位矩阵,a1,a2,.an,为B的N个特征值,且存在可逆矩阵P使B=PAP^(-1)-p^(-

因为[(P^2)]^(-1)[PAP^(-1)]P^2=P^(-1)AP所以PAP^(-1)与P^(-1)AP相似故它们有相同的迹(即对角线元素之和)所以a1+a2+.+an=tr(PAP^(-1)-

设n阶方阵A,B的乘积AB为可逆矩阵,证明A,B都是可逆矩阵

AB*(AB)^(-1)=EAB^(-1)=B^(-1)A^(-1)AB*(AB)^(-1)=AB*B^(-1)*A^(-1)=A[B*B^(-1)]A^(-1)=E故:B*B^(-1)不等于0B*B

设A为n阶可逆矩阵,则

C不对,因为此时只能用初等行变换才有相应结果

设A,B为n阶矩阵,如果E+AB可逆,证明E+BA可逆.

因为(E+AB)A=A(E+BA)所以A=(E+AB)^-1A(E+BA)所以(E-B(E+AB)^-1A)(E+BA)=E所以E+BA可逆且(E+BA)^-1=E-B(E+AB)^-1A再问:能不能

设A是N阶可逆矩阵,A1是A的前r行构成的r*n矩阵,

线性方程组A1=b--这是什么线性方程组再问:少写了个x应该是A1X=b再答:这是什么题呀,A1x是r行,b是n行,不能相等呀再问:是呀,太坑人了。不过要谢谢老师再答:你只要记住:行满秩时一定有解,若