设A为n级方阵,且A^2-A-6E=0,则(A-E)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 17:18:48
设A为n级方阵,且A^2-A-6E=0,则(A-E)
设A是n阶方阵,且(A+E)^2=0,证明A可逆.

由(A+E)^2=0得A^2+2A+E=0A(-A-2E)=E所以A可逆且逆矩阵为-A-2E

设A为n阶方阵,证明当秩(A)

这个很简单啊,r(A)

线性代数:设A为n级方阵,且|A|=2求|-3A|

|kA|=k^n|A|所以|-3A|=(-3)^n|A|=2*(-3)^n

设A为n阶方阵,且A2=A,则R(A)+ R(A- E) =

求法很多,用一种最简单的:根据秩的不等式:R(A)+R(A-E)-n≤R[A(A-E)]=R(A^2-A)又因为:A^2=A,即A^2-A=0(零阵)因此:R(A)+R(A-E)-n≤R[A(A-E)

设A为n阶方阵,且|A|不等于0,证明A^T A为正定矩阵

用正定定义与矩阵运算证明,如图.经济数学团队帮你解答.请及时评价.

设A是数域F上一个n阶方阵,且A^2=A(A为幂等矩阵)

证明:(1)因为A^2=A所以(A+I)A-2(A+I)=-2I所以(A+I)(A-2I)=-2I所以A+I可逆,且(A+I)^-1=(-1/2)(A-2I).(2)是要证r(A)+r(I-A)=n吧

设A为N阶方阵,且A-E可逆,A^2+2A-4E=0,求A+3E的逆方阵

将A^2+2A-4E=0变化为A^2+2A-3E=E,即(A+3E)*(A-E)=E,因为(A-E)可逆,所以A+3E的逆方阵为(A-E)^-1

设A,B为n阶方阵,且r(A)+r(B)

设r(A)=p则存在矩阵P1,Q1使得P1AQ1=C1(C1只有前p行,前p列不为0)则A=P1^-1C1Q1^-1设r(B)=q则存在矩阵P2,Q2使得P2BQ2=C2(C2只有后q行,后q列不为0

设A为n阶方阵,且A^2-A=2I,证明:R(2I-A)+R(I+A)=n

由A²-A=2I得A²-A-2I=0(A-2I)(A+I)=0所以R(A-2I)+R(A+I)≤n又R(A-2I)=R(2I-A)故R(2I-A)+R(A+I)≤n又R(2I-A)

设A为n阶方阵,且A^2=A+2I,证明r(A-2I)+r(A+I)=n

第一个“→”的变换是指:把第一行乘以"I"加到第二行第二个“→”的变换是指:把第二列乘以"-I"加到第一列第三个“→”的变换是指:把第二行乘以"1/3(A-2I)"加到第一行第四个“→”的变换是指:把

设A为n阶方阵,且|A|=2,A*为A的伴随矩阵,则|A*|=?

设B为A的伴随矩阵,E为单位阵,AB=|A|E,|A||B|=|A|^n,|B|=|A|^(n-1)

设A,B为n阶方阵,且AB=A+B,试证AB=BA

由AB=A+B,有(A-E)(B-E)=AB-A-B+E=E.A-E与B-E互为逆矩阵,于是也有(B-E)(A-E)=E.展开即得BA=A+B=AB.

设A为n阶方阵,且A=A^2;,则(A-2E)^-1

A=A^2A^2-A=0A^2-2A=-AA(A-2E)=-AA-2E=-E(A-2E)*(-E)=E所以:(A-2E)^-1=-E

设A、B均为n阶方阵,A可逆,且AB=0,则

由A可逆,且AB=0等式两边左乘A^-1得A^-1AB=A^-10即B=0所以(A)正确

问一道线性代数题目设A,B均为n阶方阵,且r(A)

解 : 为了方便,这里只举由一个方程构成的方程组为例子: 方程组 x1+x2+x3=0 的基础解系为 (-1,1,0)^T,(-1,0,1)

设A为n阶方阵,且A*A=A,证明R(A)+R(A-E)=n.

因为A*A=A,所以A(A-E)=0;故A-E的每个列向量都是方程Ax=0的解,由于A-E中的列向量未必构成解空间的基,所以R(A)+R(A-E)小于等于n;又由R(A)+R(B)>=R(A+B);立

设A为n阶方阵,且A的行列式=1/2,则(2A*)*是多少

用伴随阵与逆矩阵的关系可如图得到答案是2A.经济数学团队帮你解答,请及时采纳.

设A、B为任意n阶方阵,且BA=A+B,则AB=

BA=A+BB=BA-AB=(B-I)A(I=identitymatrix)(B-I)^(-1)*B=(B-I)^(-1)*(B-I)*A(B-I)^(-1)*B=A(B-I)^(-1)*B*B=AB