设A为m×n矩阵,方程AX=0仅有零解的充要条件是什么

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 15:39:39
设A为m×n矩阵,方程AX=0仅有零解的充要条件是什么
设A为m*n矩阵,则齐次线性方程组AX=0仅有非零解的充分必要条件是2

"齐次线性方程组AX=0仅有非零解"应该改成"齐次线性方程组AX=0仅有零解"或者"齐次线性方程组AX=0有非零解"你得先掌握Ax的意义把A按列分块成A=[a1,...,an]那么Ax=x1a1+x2

设m*n矩阵A的秩R(A)=n-1,且K1,K2 是齐次方程AX=0的两个不同的解,则AX=O的通解为多少?

k1+k2可能为零向量而k1-k2≠0故为基础解系再问:k1,k2其中一个必是零向量,但另外一个不是,之和不会是零向量啊再答:k1,k2其中一个必是零向量?哪有这结论?η是解,则-η也是解再问:AX=

设A为m*n矩阵,则齐次线性方程组AX=0仅有非零解的充分必要条件是()

AX=0有非零解A的列向量组线性相关AX=0仅非零解A的列向量组线性无关应该是(B)正确再问:哦,不过为什么是这样的呢?再答:这是定理呀.A=(a1,...,an)x1a1+...+xnan=0有非零

设A为m*n矩阵,则齐次线性方程组AX=0仅有零解的充分必要条件是()

AA的列向量组线性无关表示0的线性表出式唯一,而零解显然是一组解,所以仅有零解AX=0仅有零解假设A的列向量组线性相关则存在一组非零解矛盾

设A为m*n矩阵,则齐次线性方程组Ax=0仅有零解的充分必要条件是?

(C)A的列向量组线性无关即r(A)=n.再问:能详细点么再答:这是定理结论AX=0只有零解的充要条件是r(A)=n.

设A为m×n矩阵,齐次线性方程组Ax=0仅有零解的充分条件是(  )

A为m×n矩阵,∴A有m行n列,且方程组有n个未知数 Ax=0仅有零解⇔A的秩不小于方程组的未知数个数n∵R(A)=n⇔A的列秩=n⇔A的列向量线性无关.矩阵A有n列,∴A的列向量组线性无关

线性代数:设n元m个方程的齐次线性方程组AX=0的系数矩阵A的秩为n-1,如果矩阵A的每行的元素之和均为0,则线性方程组

系数矩阵A的秩为n-1,则AX=0的基础解系有n-r(A)=1个向量.再由A的每行的元素之和均为0知(1,1,...,1)'是AX=0的一个非零解.所以AX=0的通解是c(1,1,...,1)',c为

设A为m×n矩阵,则齐次方程组Ax=0仅有零解的充分条件是( ).

A.A的列向量组线性无关记:A=(a1,a2,...,an)Ax=x1a1+x2a2+...+xnan=0Ax=0仅有零解《===》列向量:a1,a2,...,an线性无关.

设A为m×n矩阵,证明方程AX=Em有解的充分必要条件为r(A)=m

充分性:当r(A)=m时,则A是行满秩的,A多添任一列向量组成的增光矩阵还是行满秩的,即有r(Aei)=m,其中ei是单位阵的第i列,于是方程Ax=ei有解bi,令X=【b1b2...bm】,则AX=

设A为m*n的矩阵,B为n*m的矩阵,m>n,证明AB=0

应该是行列式|AB|=0因为A为m*n的矩阵所以r(A)

考研数学线性代数:设A是m乘n矩阵,A有n阶子式不为0,求证Ax=0只有0解

把那个不为零的n阶子式取出来,记做B,把B看成矩阵,则显然Ax=0的解x也满足Bx=0,而因为det(B)≠0,所以Bx=0只有零解,从而Ax=0也只有零解.

设A为m*n矩阵,证明:若任一个n维向量都是AX=0的解,则A=0

任取n个线性无关的n维列向量b1、…、bn,令B=(b1,…,bn),则B是可逆矩阵.因为Abi=0,所以AB=0,两边右乘B^(-1),可得A=0.再问:是n维行向量吧再答:是n维列向量,n维列向量

设A为m×n矩阵,证明:若任一n维向量都是AX=0的解,则A=0

由题意,n阶单位矩阵的n个列向量e1,e2,……,en都是Ax=0的解,而Aei就是A的第i个列向量,所以A=0

设A为m*n实矩阵,A^TA为正定矩阵,证明:线性方程组AX=0只有零解.

1、因为A*A'('表示转置)为n*n的矩阵,而一个矩阵的秩必≤它的行数或列数,所以r(A*A')≤n可以直接得到.2、需要说明的是,r(n)中的n是什么?你可能看错了,一个数是不必算秩的(一个非0数

设A为m×n矩阵,证明AX=Em有解的充要条件是R(A)=m

证明:必要性:因为AX=Em有解所以Em的列向量组可由A的列向量组线性表示所以m=r(Em)=Em的列秩=m而A只有m行,所以r(A)再问:确定对吗?再答:呵呵保证

设A为n阶矩阵,且A的秩为n-1,m、n是两个不同的解,则Ax=0的通解为 ,

为n-1,说明解为n-n+1=1个Ax=0的通解可以表示为km或者kn再问:那答案为何写成k(m-n)呢再答:答案蛋疼三种方法都可以你写成k(m+n)也对注:如果m,n是非齐次方程组的解的话,那答案就

设A是m*n矩阵,B是m*s矩阵,证明矩阵方程A'AX=A'B一定有解(其中A'为A的转置矩阵)

只需证明A'A的秩等于(A'A,A'B)的秩,即r(A'A)=r(A'A,A'B)首先r(A'A)

设A为m×n实矩阵,证明线性方程组Ax=0与A'Ax=0同解

证明:显然有:Ax=0的解必然也是A'Ax=0的解.下面证:若A'Ax=0,那么Ax=0x是n维列向量,A'Ax是n维列向量且A'Ax=0,x'是n维行向量.方程A'Ax=0两边左乘x'得:x'A'A