设A为mxn矩阵,线性方程组AX=b的增广矩阵为 A,则线性方程组有解得充分必要
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 08:55:41
(A)=n不能保证r(A,b)=r(A),所以(A)不对.r(A)=n只能保证在方程组有解时解唯一.再问:可是n不是未知数X的个数吗?那样的话不就是秩的最大值了么?系数矩阵如果都已经达到秩的最大值了,
Ax=b有解的条件是r(A)=r(A|b),所以D肯定不对,因为它没有考虑增广矩阵C显然不对,因为m=n不保证A满秩A显然对,因为r(A)=m,而r(A|b)不可能比m大,因为A|b只有m行,秩不可能
经济数学团队帮你解答,有不清楚请追问.请及时评价.
只要证明方程组A'Ax=0和Ax=0同解(记A'=At)若x是Ax=0的解,则显然x也是A'Ax=0的解若x是A'Ax=0的解则x'A'Ax=x'0=0(Ax)'(Ax)=0||Ax||=0Ax的范数
非齐次方程组无解的情况是系数矩阵的秩与增广矩阵的秩不一样而题中系数矩阵的秩m,方程组也只有m个,所以增广矩阵的秩不可能大于m,且增广矩阵的秩是大于系数矩阵的,所以增广矩阵的秩也为m,所以此非齐次方程组
一点不麻烦吧...对齐次方程组AX=0因为r(A)=
Ax=b有解r(A)=r(A,b)r=n时,方程组不一定有解r=m时,因为m=r(A)再问:为什么r(A,b)
设A为mxn实矩阵,A^tA是正定矩阵,所以|A^tA|>0,从而(A^tA)的秩是n从而方程(A^tA)X=0只有零解.下面只要证方程(A^tA)X=0与方程AX=0有相同的解即可.1)设α设是方程
Ax=b有解r(A)=r(A,b)r=n时,方程组不一定有解r=m时,因为m=r(A)
证:首先(A^TA)^T=A^T(A^T)^T=A^TA故A^TA是对称矩阵.又对任一非零列向量x由r(A)=n知AX=0只有零解所以Ax≠0再由A是实矩阵,所以(Ax)^T(Ax)>0即x^T(A^
将B写成列向量的形式:B=[B1B2...Bs]当AB=0则AB=[AB1AB2...ABs]=0所以ABi=0所以:列向量Bi都是AX=0的解当B的列向量都是AX=0的解时,AB1=0AB2=0..
AX=b有唯一解的充分必要条件是r(A)=r(A,b)=n题目让给出必要条件所以(C)r(A)=n正确.
D、矩阵A存在m-r个行向量线性无关这个说法是错误的这个说法与C中的说法矛盾其实也应该是r个先行无关的向量
当m>n时,r(A)
记A的行向量为ai,i=1,2,……,m则A*A^T的所有顺序阶子式均有G(a1,a2,……,ak)的形式其中,1≤k≤m,G(a1,a2,……,ak)为a1,a2,……,ak在标准内积意义下的Gra
矩阵A的秩不可能大于它两维尺度(m,n)中最小的那个所以r(A)再问:再问:这个例子的话。。。。再问:答案是小于m再答:本来就该小于m啊?难道我说的不是这个?再问:你说的是n………再答:n
设R(AB)=r,则线性方程组ABX=0的基础解系中含有s-r个解向量,又线性方程组ABX=0与BX=0同解,所以线性方程组BX=0的基础解系中也含有s-r个解向量,所以R(B)=s-(s-r)=r即
(B)正确.此时A行满秩,A再添加一列b后秩仍然是m即有r(A)=r(A,b)故AX=b有解.再问:不好意思再问下,A和D选项错误的原因是?再答:(A)r(A)=n并不能保证r(A,B)=n方程组可能
如果知道Laplace展开定理,直接对前m行展开即可如果知道行列式乘积定理,可以做分解[AB;0C]=[IB;0,C]*[A0;0;I]对[IB;0,C]按第一列展开并归纳,对[A0;0;I]按最后一