设A为3阶矩阵,且|A|=6,若A的一个特征值为2,则
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 21:58:35
|-2A|=(-2)^3*|A|=-8*1/2=-4
用性质,答案是-n.
可以|A||1/3A^-1-2A*|=|1/3AA^-1-2AA*|=|1/3E-2|A|E|=|1/3E-4E|=(1/3-4)^n原题是什么?3阶的?(3A)^-1最后结果再除|A|即可再问:对不
再问:额哥们选择题没这个答案啊再答:哦,不好意思,倒数第二行把2/3写成4/3了,最后答案是-16/3,不错的。
再问:为什么是(1/4)的三次方,不是平方?第二步是用了什么公式?再答:亲,A*也是3阶矩阵啊,1/4乘A*,是把A*中的每个元素都乘1/4,但求行列式的时候,每行都可以提取一个1/4,所以是3次方。
因为A*=-A^T所以Aij=-aij因为A为3阶非零实矩阵所以必有一行元素不全为0设i行不全为0,按第i行展开|A|=ai1Ai1+ai2Ai2+ai3Ai3=-(ai1)²-(ai2)&
det(AA^T)=det(A)det(A^T)=9det(AA^*)=det(det(A)E)det(A^*)=[det(A)]^4=81再问:第二个是多少啊,算不出来么再答:det(A^*)=[d
已知A,B为3阶矩阵,且|A|=3,|B|=2,于是|-|B|A|=[(-|B|)^3]|A|=[(-2)^3]×3=-8×3=-24(这里|-|B|A|=[(-|B|)^3]|A|利用了n阶矩阵C的
A为2阶矩阵,且|A|=-1,说明A有一个正的特征值,一个负的特征值,也就是两个不同的特征值.n阶矩阵有n个不同的特征值必可相似对角化,所以A可以相似对角化再问:A可也能只有一个正的或者负的特征值啊再
知识点:若a是A的特征值,且A可逆,则a/|A|是A*的特征值所以A*必有一个特征值为2/6=1/3.你的好评是我前进的动力.我在沙漠中喝着可口可乐,唱着卡拉ok,骑着狮子赶着蚂蚁,手中拿着键盘为你答
因为A*=|A|A^-1=2A^-1所以|3A^-1-2A*|=|3A^-1-4A^-1|=|-A^-1|=(-1)^n|A|^-1=[(-1)^n]/2
啊哈,我就做做看,不知道对不对呐,高等代数学的不是很好.d=A的模=1/2,A的模乘以A^-1的模=E的模=1,A^-1=1/dA*,所以原式等于3A^-1-2(dA-1)=2A^-1=2乘以2=4
A*A=AA*=|A|I从而A*=|A|A﹣¹3A﹣¹-2A*=3A﹣¹-2|A|A﹣¹=-A﹣¹|-A﹣¹|=(-1)^n|A﹣¹
A*=|A|A^(-1)=2A^(-1)由|A|=2知|A^(-1)|=1/2|3A*|=|6A^(-1)|=6³|A^(-1)|=6³×1/2=108A^(-1)表示A的逆矩阵
设λ是A的特征值则λ^3-2λ^2+4λ-3是A^3-2A^2+4A-3E的特征值而A^3-2A^2+4A-3E=0,零矩阵的特征值只能是0所以λ^3-2λ^2+4λ-3=0.λ^3-2λ^2+4λ-
A^2=0即AA=0那么在这里由矩阵秩的不等式R(A)+R(B)-n≤R(AB)可以知道,2R(A)-3≤R(A^2)=0所以2R(A)≤3即R(A)≤1.5显然秩只能为非负整数,那么R(A)=0或1
(3A)^(-1)=(1/3)A^(-1)A*=|A|A^(-1)=(1/2)A^(-1)所以|(3A)^-1-2A^*|=|(1/3)A^(-1)-(1/2)A^(-1)|=|(-2/3)A^(-1
A为3阶方阵,|-2A-1|=(-2)^3|A-1|=-8*(1/3)=-8/3-1是逆的意思吧,否则一个矩阵和1是没法做减法的
AA*=!A!E不等于0故:A*可逆.A*A/!A!=E(A*)^(-1)=A/!A!!表示绝对值.
秩为四啊[A]不等于零,就是满秩四阶,就是四