设A为3*3矩阵,丨(A3-2A1,3A2,A1 2A3)丨
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 00:18:17
因为3阶矩阵A的特征值为1,2,-3所以|A|=1*2*(-3)=-6.若λ是A的特征值,a是A的属于λ的特征向量,则Aa=λa两边左乘A*,得λA*a=A*Aa=|A|a所以当λ≠0时,A*a=(|
⑴设k1a1+k2a2+k3a3=0①A①-k1a1+k2a2+k3﹙a2+a3﹚=0即-k1a1+﹙k2+k3﹚a2+k3a3=0②A②得到k1a1+﹙k2+2k3﹚a2+k3a3=0③③-①2k3
假设 λ 为A的特征值,因为A3+A2+A=3E,所以 λ3+λ2+λ-3=0.即 (λ3-1)+(λ2-1)+(λ-1)=0,得(λ-1)(λ2+2λ+3)=0.解得,
帮你证证看,答案稍等.解答如下:A*a1=-a1,A*a2=a2;A*a3=a2+a3反证法:假设三者线性相关,则存在k1,k2不全为0满足a3=k1*a1+k2*a2;所以A*a3=A*(k1*a1
解:因为r(A)=3,所以AX=0的基础解系含4-r(A)=1个解向量所以(3a1+a2)-(a1+a2+2a3)=(0,4,6,8)^T≠0是AX=0的基础解系(1/4)(a1+a2+2a3)=(1
证明:设k1a1+k2a2+k3a3=0(1)则k1Aa1+k2Aa2+k3Aa3=0由已知得-k1a1+k2a2+k3(a2+a3)=0即有-k1a1+(k2+k3)a2+k3a3=0(2)(1)-
|A3-2A1,3A2,A1|第三列x2加到第一列得到|A3,3A2,A1|,第二列拿出一个3得到3|A3,A2,A1|,交换第一第三列最后得到-3|A1,A2,A3|=-3x(-2)=6
B=(a1+a2+a3,a1+2a2,a1+3a2+a3)=(a1,a2,a3)K=AKK=111123101所以|B|=|A||K|即有2=2|A|所以|A|=1.
等于0.首先我们知道,一个p*q的矩阵的秩是不会大于p和q的,即r≤min(p,q),因此本题中r(A)≤2,r(B)≤2.关于矩阵乘法的秩有定理:r(AB)≤min(r(A),r(B)),因此本题中
由於3*3列矩阵,且|A|=1即此矩阵属于单位矩阵.|100|A=|010||001|把A按”列“分块为A=(A1,A2,A3)按照上图把第2列X(-2)减去第3列,抽-2出来,最后不变所以-2A2-
三阶矩阵A的特征值为1,—1,2,而B为A的多项式,所以B有特征值1-2+3=2,-1-2+3=0,8-8+3=3故|B|=0
|a3-2a1,3a2,a1|第1列加上第3列*2=|a3,3a2,a1|交换第1列和第3列=|a1,3a2,a3|将第2列中的3提取出来=3*|a1,a2,a3|=3*|A|=3*(-2)=-6所以
丨a3-2*a1,3*a2,a1丨=丨a3,3*a2,a1丨-丨2*a1,3*a2,a1丨=3*丨a3,a2,a1丨-2*丨a1,3*a2,a1丨=3*(-1)*丨a1,a2,a3丨-0=3*(-1)
设x=(x1,x2,x3,x4)',首先考虑对应的齐次方程Ax=0,显然r(A)=3,所以基础解系仅含一个解,而方程Ax=0即x1a1+x2a2+x3a3+x4a4=0显然有一个解是(1,0,-2,3
对B进行初等列变换,C2-C1,然后对换C1跟C2两列(此时要多加个负号),即:-(2a1,a2,a3),所以|B|=-2|A|=-6,我也是刚学这个的,不知有没错.
推导一下,对于B的行列式,第三列减去第二列,然后第二列减去第一列,得|a1+a2+a3,a2+3a3,a2+5a3|,然后第三列减去第二列,得|a1+a2+a3,a2+3a3,2a3|,然后第二列X2
|-3A|=(-3)^3|A|=-27*2=-54