设Ax=0,若A是6 阶方阵,R(A)=5,则基础解系中所含解向量个数为

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 12:15:37
设Ax=0,若A是6 阶方阵,R(A)=5,则基础解系中所含解向量个数为
设A*是n阶方阵A的伴随矩阵,若R(A*)=n,则R(A)=?

A*是n阶方阵A的伴随矩阵,若R(A*)=n,则R(A)=n因为A^(-1)=A*/|A|两边同时乘以A得E=AA*/|A|所以A可逆R(A)=n记住结论:A*是n阶方阵A的伴随矩阵,①若R(A)=n

设A是n阶方阵,证明齐次线性方程组AX=0与(A^T)AX=O是同解方程组.

A是实方阵吧.证明:记A'=A^T(1)设X1是AX=0的解,则AX1=0所以A'AX1=A'(AX1)=A'0=0所以X1是A'AX=0的解.故Ax=0的解是A'AX=0的解.(2)设X2是A'AX

设A是n阶方阵,其秩r

对再答:行秩等于列秩等于矩阵的秩再答:行向量组的秩是它最大线性无关组中向量的个数

设A是n阶方阵,R(A)=n - 2,则线性方程组AX=0的基础解系所含向量的个数是(),

秩是n-2,所以线性方程组AX=0的基础解系所含向量的个数是2,两个相加为n.

设A为n阶方阵,且R(A)=n-1,a1,a2是AX=0的两个不同的解向量,则AX=0的通解为?A.ka1

(A)=n-1说明解空间的秩为1所以找一个非零解就行.显然a1-a2是一个非零解.所以通解为C(a1-a2)

设A为n阶方阵,且R(A)=n-1,a1,a2是AX=0的两个不同的解向量,则AX=0的通解为?

(1)因为r(A)=2,所以AX=0的基础解系含5-r(A)=3个解向量所以AX=0的3个线性无关的解都是其基础解系所以(2),(3)正确.(4)线性相关:(a1-a2)+(a2-a3)+(a3-a1

设A是N阶方阵,若存在N阶方阵B不等于零,使AB=0(矩阵),证明R(A)

用反证法.若R(A)=N,则A可逆.A^(-1)[AB]=A^(-1)*0=0,又A^(-1)[AB]=B,因此,B=0.与B不等于0矛盾.故,R(A)

设A,B是n阶方阵,且r(A)=r(B),则

选项A,B,C是瞎扯,没这结论r(A+B)≤r(A)+r(B)正确,但与已知r(A)=r(B)没关系.怪怪的

设A是n阶方阵,若存在n阶方阵B不等于0,使AB=0,证明R(A)小于n.

因为B≠O(矩阵),所以存在B的一列b≠0(列向量)因为AB=0,所以Ab=0即齐次线性方程组AX=0存在非零解,所以R(A)

设A是n阶方阵 已知线性方程组AX=0有非零解 证明A^2=0也有非零解

假设x1为Ax=0的非零解,那么Ax1=0,两边左乘A得到AAX1=0即,x1也是A^2x=0的非零解!再问:可以说一下AAX的结构吗?再答:因为A为方阵,所以,AAX=A^2X再问:有非零解的是

设A是N阶方阵,若存在N阶方阵B不等于零,使AB=0,证明R(A)《N

假设R(A)=N那么A为满秩矩阵,那么A可逆,A*A的逆矩阵*B=0,所以B=0,与条件矛盾.所以R(A)〈N

1、设A是n阶方阵,当条件(?)成立时,n元线性方程组AX=b有唯一解.A:r(A)=n B:r(A)<n

1.A(当A是满秩阵时,AX=b有唯一解)2.答案:06(设λ为A的特征值,p为λ对应的特征向量,则Ap=λp;两边同时乘以3得3Ap=3λp,即(3A)p=(3λ)p,即3A特征值是A的3倍)3.(

设A是3阶方阵,且r(A)=2,(A*)^3=0,证明:(A*)^2=0

因为r(A)=3-1,所以r(A*)=1,从而存在非零列向量a、b使得A*=ab^T则(A*)^3=(ab)^T=(b^Ta)(ab^T)^2=0所以b^Ta=0或(ab^T)^2=(A*)^2=0若

设A是一个r阶方阵,B是一个n×r矩阵,秩B=r,AB=0 试证:A=0

ank(B)=r说明B的列线性无关,因此对任何r维向量x,Bx=0x=0(Bx表示对B的列进行线性组合,x的分量是系数).然后把A按列分块,那么A的每一列都是0.

设A为n阶方阵,且r(A)=n-1,α1,α2是AX=0的两个不同的解向量,则方程组AX=0的通解为

选C.由于r(A)=n-1,因此解是一维的.因为α1、α2是两个不同的解向量,因此α1-α2≠0向量,可作为基底,所以通解为k(α1-α2).A、B、D都有可能是0向量,故不能作基.

设A为n阶方阵,Ax=0有非零解,则A必有一个特征值?

必有一个特征值为零Ax=0有非零解表明A的秩

设A是n阶方阵,若对任意的n维向量X均满足AX=0则A=0?

不对是|A|≠0由已知AX=0只有零解,这等价于|A|≠0.再问:刘老师早上好,答案就是A=0再答:不好意思我搞反了是所有的X,AX=0此时,基础解系应该含n个向量所以n-r(A)=n所以r(A)=0