设an的极限不存在,而bn的极限存在

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 14:58:13
设an的极限不存在,而bn的极限存在
数列an有极限,bn极限为0,an乘 bn 的极限怎么证

就是0利用定义证明这题表述起来时相当复杂的假定an的极限为A那么,给定一个小数e1>0,存在N1,使得n≥N1时[an-A]≤e1[]在这里代表括号做不等式变形,n≥N1时A-e1≤an≤A+e1记m

极限存在的条件是什么?什么时候极限不存在?什么时候函数极限不存在?

数列极限定义:设|Xn|为一数列,如果存在常数a对于任意给定的正数ε(不论它多么小),总存在正整数N,使得当n>N时,|Xn-a|

数列an的前n项和为Sn=2^n-1,设bn满足bn=an+1/an,判断并证明bn 的单调性

Sn=2^n-1=>an=Sn-S(n-1)=2^n-2^(n-1)=2^(n-1)bn=an+1/an=2^(n-1)+1/(2^(n-1))那么有bn-b(n-1)=(2^(n-1)-2^(n-2

设有数列an,bn,如果an/bn的极限等于a(a不等于0)且an的极限等于0,求证bn也等于0

证明:因为an/bn的极限等于a,所以bn/an的极限等于1/a(因为a不等于0)所以数列{bn/an}有界,即设|bn/an|0,由于an的极限等于0所以对于上述ε,存在N,当n>N时,恒有|an-

证明极限不存在的方法

(x->a)函数极限存在的充分必要条件是左右极限都存在并且相等,如果这个条件的不满足则极限不存在,具体有:左极限不存在、右极限不存在、左右极限都存在但是不相等.(x->a或x->∞)如果能选出两列xn

设各项均为正数的数列{an}和{bn}满足:an,bn,an+1成等差数列,bn,an+1,bn+1等比数列且a1=1,

a(n+1)=√[bn*b(n+1)]2bn=an+an+12bn=√[bn*b(n-1)]+√[bn*b(n+1)]2√bn=√b(n-1)+√b(n+1)所以数列{√bn}为等差数列√b1=√2(

数列的极限高中lim(2bn^2+4n+an^2-2n+1)/(bn+2)=1

lim(2bn^2+4n+an^2-2n+1)/(bn+2)=1,括号里分子分母同时除以n:lim(2bn+4+an-2+(1/n)/(b+2/n))=1当n趋于无穷时,1/n=2/n=0;要是方程成

关于数列的极限问题若极限lim(5an+4bn)=7,极限lim(7an-2bn)=5,则极限lim(6an+bn)=?

lim5an+lim4bn=7lim7an-lim2bn=55liman+4limbn=77liman-2limbn=5liman=17/19limbn=12/19lim(6an+bn)=6

讨论数列an^2+bn+2/n+1的极限

an^2+bn+2/n+1=(an^3+(a+b)n^2+bn+2)/(n+1)当a≠0或a+b≠0,极限为∞,只有当a=0且b=0时才有极限为0

极限不等式极限不等式的两个定理问题定理1:设序列An和Bn的极限分别是a和b,如果a>b,那么一定存在N使得n>N时,A

哈哈,给你问着了,这是个很经典的问题,就是在求极限的过程中等号不一定是成立的,你很敏锐嘛比如说Bn=n/n+1和An=n/n+2两个数列显然这两个数列的极限相等并且都是1,但是无论对于任何的N,n/n

设bn=(an+1/an)^2求数列bn的前n项和Tn

a(n)=aq^(n-1),a>0,q>0.a+aq=a(1)+a(2)=2[1/a(1)+1/a(2)]=2[1/a+1/(aq)]=2(q+1)/(aq),a=2/(aq),q=2/a^2,a(n

an=3*2^(n-1),设bn=n/an求数列bn的前n项和Tn

将an带入bn得bn=n/3*2^(n-1);将Tn展开为Tn=1/3(1+2/2+3/2^2+4/2^3+...+n/2^(n-1))---此为1式然后等是两边同时1/2*Tn=1/3(1/2+2/

{an-bn}的极限是0 证明{an} {bn}极限相等

题目不够严谨,应该这样说:{an-bn}的极限是0,且{an}、{bn}的极限都存在,证明{an}{bn}极限相等因为liman-bn=0根据极限的减法运算:liman-bn=liman-limbn=

数学证明题: 设{an}{bn}是公比不等的两等比数列,Cn=an+bn,求证{cn}不是等比数列

证明:假设{Cn}为公比为q的等比数列设{an}的公比为q1,{bn}的公比为q2,则Cn=C1*q^(n-1)而C1=a1+b1,故Cn=a1*q^(n-1)+b1*q^(n-1)又因为an=a1*

求证极限:设数列{An},{Bn}均收敛,An=n(Bn-Bn-1),求证limAn = 0.

An=nBn-nBn-1,数列收敛必有极限.对于任意给定的ε1,存在N1使得,A为极限Bn=A+α;对于任意给定的ε2,存在N2使得Bn-1=A+β取N=max{N1,N2}使得An=n{α+(-β)

判断极限不存在的题目.

lim(x→0)[√|x|sin(1/x^2)]/xx→0,1/x^2→∞x→0,sin(1/x^2)1/x^2=kπ时,sin(1/x^2)=01/x^2=2kπ+π/2时,sin(1/x^2)=1

设数列{an},{bn},满足an=[lg(b1)+lg(b2)+...+lg(bn)]/n,证明{an}为等差数列的冲

=====啊,等等再问:?怎么了?你会不?再答:马上再问:大哥~麻烦快点吧~急死我了~~~~~~~~~~~再答:①充分性,即:由“{bn}为等比数列”推出“{an}为等差数列”设bn公比为q,∵b1>

设数列{an}有界,又bn的极限等于0,证明an乘bn的极限等于0

用定义证明.{an}有界,则存在正数M,使得|an|≤M.所以|anbn|≤M|bn|.因为bn的极限是0,所以对于任意的正数ε,存在正整数N,当n>N时,|bn|<ε/M.所以,当n>N时,|anb