设an的极限不存在,而bn的极限存在
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 14:58:13
就是0利用定义证明这题表述起来时相当复杂的假定an的极限为A那么,给定一个小数e1>0,存在N1,使得n≥N1时[an-A]≤e1[]在这里代表括号做不等式变形,n≥N1时A-e1≤an≤A+e1记m
数列极限定义:设|Xn|为一数列,如果存在常数a对于任意给定的正数ε(不论它多么小),总存在正整数N,使得当n>N时,|Xn-a|
Sn=2^n-1=>an=Sn-S(n-1)=2^n-2^(n-1)=2^(n-1)bn=an+1/an=2^(n-1)+1/(2^(n-1))那么有bn-b(n-1)=(2^(n-1)-2^(n-2
证明:因为an/bn的极限等于a,所以bn/an的极限等于1/a(因为a不等于0)所以数列{bn/an}有界,即设|bn/an|0,由于an的极限等于0所以对于上述ε,存在N,当n>N时,恒有|an-
(x->a)函数极限存在的充分必要条件是左右极限都存在并且相等,如果这个条件的不满足则极限不存在,具体有:左极限不存在、右极限不存在、左右极限都存在但是不相等.(x->a或x->∞)如果能选出两列xn
a(n+1)=√[bn*b(n+1)]2bn=an+an+12bn=√[bn*b(n-1)]+√[bn*b(n+1)]2√bn=√b(n-1)+√b(n+1)所以数列{√bn}为等差数列√b1=√2(
lim(2bn^2+4n+an^2-2n+1)/(bn+2)=1,括号里分子分母同时除以n:lim(2bn+4+an-2+(1/n)/(b+2/n))=1当n趋于无穷时,1/n=2/n=0;要是方程成
lim5an+lim4bn=7lim7an-lim2bn=55liman+4limbn=77liman-2limbn=5liman=17/19limbn=12/19lim(6an+bn)=6
an^2+bn+2/n+1=(an^3+(a+b)n^2+bn+2)/(n+1)当a≠0或a+b≠0,极限为∞,只有当a=0且b=0时才有极限为0
哈哈,给你问着了,这是个很经典的问题,就是在求极限的过程中等号不一定是成立的,你很敏锐嘛比如说Bn=n/n+1和An=n/n+2两个数列显然这两个数列的极限相等并且都是1,但是无论对于任何的N,n/n
a(n)=aq^(n-1),a>0,q>0.a+aq=a(1)+a(2)=2[1/a(1)+1/a(2)]=2[1/a+1/(aq)]=2(q+1)/(aq),a=2/(aq),q=2/a^2,a(n
将an带入bn得bn=n/3*2^(n-1);将Tn展开为Tn=1/3(1+2/2+3/2^2+4/2^3+...+n/2^(n-1))---此为1式然后等是两边同时1/2*Tn=1/3(1/2+2/
题目不够严谨,应该这样说:{an-bn}的极限是0,且{an}、{bn}的极限都存在,证明{an}{bn}极限相等因为liman-bn=0根据极限的减法运算:liman-bn=liman-limbn=
证明:假设{Cn}为公比为q的等比数列设{an}的公比为q1,{bn}的公比为q2,则Cn=C1*q^(n-1)而C1=a1+b1,故Cn=a1*q^(n-1)+b1*q^(n-1)又因为an=a1*
An=nBn-nBn-1,数列收敛必有极限.对于任意给定的ε1,存在N1使得,A为极限Bn=A+α;对于任意给定的ε2,存在N2使得Bn-1=A+β取N=max{N1,N2}使得An=n{α+(-β)
lim(x→0)[√|x|sin(1/x^2)]/xx→0,1/x^2→∞x→0,sin(1/x^2)1/x^2=kπ时,sin(1/x^2)=01/x^2=2kπ+π/2时,sin(1/x^2)=1
=====啊,等等再问:?怎么了?你会不?再答:马上再问:大哥~麻烦快点吧~急死我了~~~~~~~~~~~再答:①充分性,即:由“{bn}为等比数列”推出“{an}为等差数列”设bn公比为q,∵b1>
用定义证明.{an}有界,则存在正数M,使得|an|≤M.所以|anbn|≤M|bn|.因为bn的极限是0,所以对于任意的正数ε,存在正整数N,当n>N时,|bn|<ε/M.所以,当n>N时,|anb