设an是一个公差为d 的等差数列若1 a1a2=1 a2a3 1 a3a4
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 08:13:42
a2=a1+d a4=a1+3d(a2)2=a1×a4即(a1+d)2=a1(a1+3d)整理得a1d=d2∵d≠0∴a1=dS10=10a1+12×10×9×d=10a1+45d=55a1
由AK是A1与A2k的等比中项,得得(AK)^2=A1*A2K因为A1=9d所以AK=8+KdA2K=8+2Kd所以(8+Kd)^2=9d*(8+2Kd)(K-4)*(k+2)=0因为K>0所以K=4
首先算这几个数的平均数,易得平均数就是a4.然后跟据方差的计算公式s=1/7[(a1-a4)^2+(a2-a4)^2+(a3-a4)^2+(a4-a4)^2+(a5-a4)^2+(a6-a4)^2+(
a1^2=a11^2,∴a1=-a11a1=-(a1+10d)2a1=-10da1=-5dan=a1+(n-1)d=-5d+(n-1)d=(n-6)d∵d0,a6=0,a7
a1=9dak=a1+(k-1)*d=9d+(k-1)*da2k=a1+(2k-1)*d=9d+(2k-1)*dak^2=a1*a2k化简后可求出k=4
a2+a4=2*a3=8a3=4,a4=3因此a1=6,d=-1通项为an=6-(n-1)=7-n
(1)由等差数列的通项公式及求和公式可得a1+2d+a1+4d=220a1+20×19d2=150∴d=1,a1=-2(2)∵bn=2an-2an+1=21-n=(12)n-1∴bnbn-1=12∴数
设{an}是一个公差为d(d≠0)的等差数列,它的前10项s10=110且a1,a2,a4成等比数列.a1*a4=a2^2a1*(a1+3d)=(a1+d)^2a1=d或d=0(舍去)an=d*nsn
a1=9d则ak=9d+(k-1)d,a2k=9d+(2k-1)d因为ak为a1和ak的等比中项则有ak的平方等于a1乘以a2k即{9d+(k-1)d}^2=9d{9d+(2k-1)d}化简消去d得:
设a1为a,公差为d,根据等比数列性质,a1*a4=a2^2a(a+3d)=(a+d)^2,得a=d又S10=10a+10*(10-1)d/2=110,a=d=2所以等差数列an=2n只会第一问,第2
A2=A1+dA4=A1+3d(A2)^2=A1×A4(A1+d)^2=A1(A1+3d)(A1)^2+2A1d+d^2=(A1)^2+3A1dA1d=d^2d≠0A1=dS10=10A1+(1/2)
证:a1,a2,a4成等比数列,则a2²=a1a4(a1+d)²=a1(a1+3d)整理,得d²-a1d=0d(d-a1)=0d≠0,要等式成立,只有d-a1=0a1=d
设{an}是一个公差为d(d≠0)的等差数列,它的前10项s10=110且a1,a2,a4成等比数列.a1*a4=a2^2a1*(a1+3d)=(a1+d)^2a1=d或d=0(舍去)an=d*nsn
由等差数列有:S10=10a1+45d=165由等比数列有:(a1+d)(a1+d)=a1(a1+3d)即是a1^2+2d*a1+d^2=a1^2+a1*3dd^2=a1*d所以a1=d;代入第一式:
A2*A2=A1*A4A2=A1+dA4=A1+d得A1=dA10=10dS10=10(A1+A10)/2=110A1=d=2An=2n
(I)由a1,a2,a4成等比数列可得:(a1+2)2=a1(6+a1)∴4=2a1即a1=2∴an=2+2(n-1)=2n(II)∵bn=n•2an,=n•22n=n•4n∴Sn=1•4+2•42+
ak=a1+(k-1)d=9d+(k-1)d=(k+8)da2k=a1+(2k-1)d=9d+(2k-1)d=(2k+8)d又a1a2k=ak^2,即9d(8+2k)d=[(8+k)d]^2k=4
设该等差数列是首项为a1,公差为dS3=3a1+3(3-1)*d/2=3a1+3dS2=2a1+2(2-1)*d/2=2a1+dS4=4a1+4(4-1)*d/2=4a1+6d又:S3²=9
a2^2=a1a4(a1+d)^2=a1(a1+3d)a1^2+2a1d+d^2=a1^2+3a1da1d=d^2a1=da1=da2=d+d=2da3=d+2d=3d.an=a1+(n-1)d=d+
因为ak是a1与a2k的等比中项,则ak2=a1a2k,[9d+(k-1)d]2=9d•[9d+(2k-1)d],又d≠0,则k2-2k-8=0,k=4或k=-2(舍去).故选B.