设ab分别为椭圆的左右顶点椭圆长半轴的长等于焦距

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 11:23:15
设ab分别为椭圆的左右顶点椭圆长半轴的长等于焦距
设AB分别为椭圆x2/a2+y2/b2=1(a>b>0)的左右顶点,椭圆长半轴的长等于焦距,且a2/c=4,设P为有准线

由a=2c,a²/c=4,得a=2,b=√3,c=1椭圆方程为x²/4+y²/3=1A(-2,0),B(2,0)设p点为准线x=a2/c=4任一点【不同于点(4,0)】坐

设椭圆x2/a2+y2/b2=1的左右顶点分别为A(-2,0),B(2,0).离心率e=√3/2,过椭圆上任一点P 1,

a=2,e=c/a=√3/2,则c=ae=√3,b=√(a²-c²)=1椭圆的方程:x²/4+y²=1设C点坐标是(x,y),Q点坐标是(x,0),且P是QC的

已知椭圆C1的左右焦点分别为F1,F2,抛物线C2以F1为顶点,以F2为焦点,

设P到椭圆左准线的距离为D,则|PF1|=eD又因为|PF1|=e|PF2|,所以|PF2|=D,即椭圆和抛物线的准线重合,而抛物线C2以F1为顶点,以F2为焦点所以椭圆的焦准距等于抛物线焦准距的一半

AB为椭圆X*2比a*2+Y*2比b*2=1左右顶点(1,3\2)为椭圆上一点椭圆的长半轴=焦距P(4,X)APBP与椭

过程不好传上来.也就是要证明点:点B到MN的中点的距离小于MN长度的一半.试试你能行的.

已知椭圆C:x2/a2+y2/b2=1(a>b>0)的离心率为√2/2,点F为椭圆的右焦点,点A、B分别为椭圆的左右顶点

(1)e=c/a=根号2/2a^2=2c^2m(0,b)f(c,0)b(a,0)mf=(c,-b)fb=(a-c,0)mf.fb=ca-c^2=√2-1c=1a^2=2c^2=a^2-b^2=1b^2

已知椭圆x^2/9+y^2=1设直线l与椭圆M交于A,B两点 且以AB为直径的圆过椭圆的右顶点C,求三角形ABC面积的最

设l为y=kx+m,则代入椭圆方程整理得(9k²+1)x²+18kmx+9(m²-1)=0因为l与M有两个交点,所以新方程必有两解于是(18km)²-4*(9k

已知椭圆C:x^2/a^2+y^2/b^2=1(a>b>0),A1,A2为椭圆的左右顶点. 设F1为椭圆的做焦点,

设P点的坐标为(m,n)则-a≤m≤a则IPF1I=a+em当m=-a时IPF1Imin=a+e(-a)=a-c(c^2=a^-b^2)当m=a时,IPF1Imax=a+ea=a+c得证

设F1,F2分别为椭圆C:x^2/a^2+y^2/b^2=1的左右焦点,过F2的直线与椭圆C相交于AB两点

2c=2√3/sin60=4所以c=2AF2=xAF1=2a-x,余弦定理x²+16-2×4×x×cos120=(2a-x)²x²+16+4x=4a²-4ax+

椭圆x2/4+y2/2=1的左右焦点分别为F1、F2,直线L过F2与椭圆相交于AB两点,O为坐标原点

椭圆x^2/4+Y2=1的右焦点F2为(√3,0),F1坐标为(-√3,0);依题意,直线的方程应为:y=(x-√3),代入椭圆方程得:x^2/4+(x-√3)2=1,5x^2-8√3x+8=0,则方

椭圆离心率及方程设椭圆x^/a^+y^/b^=1的左焦点为F,上顶点为A,过A与AF垂直的直线分别交椭圆和X轴正半轴于P

依题,直线AF过A(0,b)F(-c,0)所以其斜率为:k=b/cAQ垂直于AF,所以AQ斜率为:k=-c/b所以AQ方程为:y-b=(-c/b)x令y=0,解得:x=b^2/c所以P坐标(b^2/c

在直角坐标系xOy中.椭圆x^2/9+y^2/4=1的左右焦点分别为F1.F2.点A为椭圆的左顶点.椭圆上的点P在第一象

设P左边为(X,Y)依题意可得F1坐标为(-根号5,0)F2(根号5,0)所以PF1坐标为(X+根号5,Y)PF2(X-根号5,Y)由PF1垂直于PF2得(X+根号5)×(X-根号5)+y^2=0又因

设A B分别为X2/a2+y2/b2=1的左右顶点,椭圆长半轴的长等于焦距,x=4为有准线

由a=2c,a^2/c=4,得a=2,c=1,b^2=3,椭圆方程3x^2+4y^2-12=0,设M(s,t),过M做ME垂直x轴于E,过M做MD平行PB并交x轴于D,准线与x轴交于Q,DE:BQ=M

已知椭圆C:x^2/4+y^2/3=1的左右两个顶点分别为AB,点M是直线l:x=4上一点,直线MA,MB分别与椭圆交于

答x^2/4+y^2/3=1a^2=4a=2c^2=a^2-b^2=4-3=1∴c=1∴离心率e=c/a=1/2F(1,0)手机提问的朋友在客户端右上角评价点【满意】即可

1.已知椭圆x^2/2+y^2=1的左右焦点分别为F1,F2,椭圆的下顶点为A,点P是椭圆上任意一点,圆M是以PF2为直

1.联结F1P,OM,显然有|OM|+|MF2|=(|F1P|+|PF2|)/2=√2.即无论P在椭圆的什么位置,圆M总与以原点为圆心,√2为半径的圆:x^2+y^2=2相切.2.K=1时满足,其他情

设椭圆C1:x^2/a^2+y^2/b^2=1(a>b>0)的左右焦点分别是F1、F2,下顶点为A,线段OA的中点为B(

S△MPQ(max)=√105/5,参见以下链接:http://hi.baidu.com/dengcz2009/blog/item/47ef2fb5046be7ea30add13c.html