设abc均为正实数,试比较(a b c)(1 a b
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 12:25:55
a^3+b^3+c^3+1/(abc)=a^3+b^3+c^3+3/(3abc)=a^3+b^3+c^3+1/(3abc)+1/(3abc)+1/(3abc)>=6(a^3*b^3*c^3*1/3ab
正确的题应该是:设正实数a、b、c,满足a≤b≤c,且a^2+b^2+c^2=9.证明:abc+1>3a证明:因为2bc=b^2+c^2-(c-b)^2,所以在a固定的时候(c-b)^2越大则bc越小
先作代换a=x^2/yz,b=y^2/zx,c=z^2/xy,等价于∑xyz/(xyz+y^3+z^3)≤∑yz/(2yz+x^2)x/∑x-xyz/(xyz+y^3+z^3)=x(y+z)*(y-z
利用求差法a²+b²-(2ab-1)=a²+b²-2ab+1=(a-b)²+1因为(a-b)²大于等于0,所以(a-b)²+1大于
a平方+b平方-(2ab-1)=(a-b)平方+1>0a平方+b平方>2ab-1
证明:假设a+1b,b+1c,c+1a都小于2,则(a+1b)+(b+1c)+(c+1a)<6.∵a、b、c∈R+,∴(a+1b)+(b+1c)+(c+1a)=(a+1a)+(b+1b)+(c+1c)
方法很多,给个起点高点的再问:谢谢你了,你太厉害了。能介绍一下chebyshev和cauchy不等式吗再答:1、Chebyshev不等式。设两组数a1
证明:因为为正实数,由平均不等式可得1/a+1/b+1/c≥3倍三次根号下1/a*1/b*1/c即1/a+1/b+1/c≥3/abc∴1/a+1/b+1/c+abc≥3/abc+abc又3/abc+a
用柯西不等式(a^2+b^2)(c^2+d^2)大于等于(ac+bd)^2(1/a+9/b)(a+b)>=(1+3)^2即a+b>=16所以c小于等于16
充分必要条件.
f(x)=e^x-(ax²+bx+c)f'(x)=e^x-2ax-bf''(x)=e^x-2a∵f''(x)=e^x-2a至多只有一个根∴f'(x)=e^x-2ax-b至多只有两个根∴f(x
由已知得:abc+ab+bc+ac+a+b+c+1=8因为a+b+c小于或等于3次根号下3abcab+bc+ac>=3次根号下3(abc)^2abc+ab+bc+ac+a+b+c+1>=abc+3次根
由32+x+32+y=1,化为3(2+y)+3(2+x)=(2+x)(2+y),整理为xy=x+y+8,∵x,y均为正实数,∴xy=x+y+8≥2xy+8,∴(xy)2−2xy−8≥0,解得xy≥4,
A/√B+B/√A-(√A+√B)=[(A√A+B√B)-(A√B+B√A)]/√A√B=(A-B)(√A-√B)/√A√B=(√A+√B)(√A-√B)/√A√B≥0∴A/√B+B/√A≥√A+√B
1/a2+1/b2+ab≥2√1/(a^2b^2)+ab=2/(ab)+ab≥2√2当且仅当a=b时等号成立
由均值不等式:a+b≥2√ab及平方均值不等式:(a²+b²)/2≥[(a+b)/2]²得:(a²+b²)/(2c)+c≥2√(a²+b
看这个贴子的3楼http://tieba.baidu.com/p/1296048627
∵abc为正实数∴a>0b>0c>0又∵1/a9/b=1∴9/ab=1ab=9∴使ab大于等于C恒成立c的取值范围:0
令a=x/y,b=y/z,c=z/x那么原不等式等价于证(x+z-y)(y+z-x)(x+y-z)≤xyz若x+z-y,y+z-x,x+y-z有一个不大于0,不妨设x+y≤z,那么y+z-x≥y+x+