设a>0,b>0,a的平方 b的平方 2=1,则a根号1 b的平方的最大值
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/23 19:23:38
a²+b²=6ab,∴(a+b)²=8ab(a-b)²=4ab∴(a+b)/(a-b)=(8ab)/(4ab)=2答:(a+b)/(a-b)的值是2
f=a√(1+b^2)f^2=a^2*(1+b^2)原条件:a^2+b^2/2=12a^2+b^2+1=3>=2√(2a^2*(b^2+1))=2√(2f^2)f^2
10=9+1所以(a²-6a+9)+(b²-2b+1)=0(a-3)²+(b-1)²=0平方大于等于0,相加等于0,若有一个大于0,则另一个小于0,不成立.所以
a^2+b^2-6ab=0a1=(3+2√2)ba2=(3-2√2)b由于a>b>0,a=(3+2√2)b代入,分母有理化得值为√2
^2008+(a+b)^2009la+2la=-2=b^2008+a^2009+b^2009(1-b)^2,(1-b)=0,b=1=1+(-2)^2009+1=2+(-2)^2009好的话采纳一下吧!
a+b>c>0,且|(a-b)|c>0,从而|(a-b)|=|b|>|c|,矛盾.假设b=0,则a>c>0,从而|(a-b)|=|a|>|c|,矛盾.(2)假设ab异号,必然有|(a-b)|>|a+b
a^2+b^2-6ab=0(a+b)^2=8ab(a-b)^2=4aba>b>0所以a+b=√8ab)a-b=√4aba+b除以a-b=√2麻烦采纳,谢谢!
将式a的b平方+a的-b平方=2根号2两边同时平方,展开后得a的2b平方+a的-2b平方+2=8@1再将所求式a的b平方-a的-b平方平方后,得a的2b平方+a的-2b平方-2@2将@2与@1相比较可
A>B>0;A²+B²-6AB=0,即A²+B²=6AB……(1)因为,[(B-A)/(A+B)]²=(A-B)²/(A+B)²=
因为a、b时方程x的平方+x-2009=0的两个实数根,所以ab=-2009,a+b=-1所以a的平方+b的平方+ab=a^2+2ab+b^2-ab=(a+b)^2-ab=(-1)^2-(-2009)
前者大(a2-b2)/(a2+b2)>(a-b)/(a+b)你可以除一下.前者除后者,如果大于1,就是前者大;如果小于1就是后者大.两者相除的结果是(a2+2ab+b2)/(a2+b2)大于1.即前者
解题思路:解方程求出a,b,把所求代数式变形后,将a,b的值代入,计算出结果.解题过程:
题目不全,后面是“什么的二分之一”叙述不清楚,最好写具体式子,
(a+b)²=8ab(a-b)²=4ab最后等于-2再问:详细的有么?再答:(a+b)²/(b-a)²=4因为a>b所以a+b/b-a=-2
假设a和b不全为0即至少有一个不等于0假设b≠0则b²>0而a²≥0所以a²+b²>0这和已知条件矛盾所以假设错误所以命题得证再问:那啥我想问一下为啥不是设全不
由公式可得:(a-b)^2=4ab(a+b)^2=8ab由于a>b>0,可得b-a=-√(4ab)a+b=√(8ab)所以(a+b)/(b-a)=-√2
a的平方+b的平方=6ab(a+b)的平方=a的平方+b的平方+2ab=8ab(b-a)的平方=a的平方+b的平方-2ab=4ab(a+b比上b-a的值)的平方=2a>b>0b-a
a²+b²-6ab=0a²+b²=6ab(a+b)²=a²+2ab+b²=8ab(a-b)²=(b-a)²=a
a>b>c>0a^2+ab-6b^2=0因式分解(a+3b)(a-2b)=0所以a+3b=0或a-2b=0有a=-3b或a=2b因为a、b同时大于0所以a=-3b舍所以a=2b则(a+b)/(b-a)
A的平方+B的平房-6AB等于0A^2+b^2=6AB∵A大于B大于0∴A+B分之B-A的值为=-(A-B)/(A+B)=-√[(A-B)^2/(A+B)^2]=-√[(A^2+b^2-2AB)/(A