设A=1.0.0,求A的特征值及对应的特征向量

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 22:44:43
设A=1.0.0,求A的特征值及对应的特征向量
设n阶方阵,A不等于0,A的m次方等于0,求A的特征值

设a是A的特征值,则对任意多项式f,若f(A)=0则f(a)=0(特征值都是最小多项式的根,最小多项式整除任意化零多项式,所以特征值是任意化零多项式的根).现在f(A)=A^m=0,所以f(a)=a^

设n阶矩阵A满足A^2=A,求A的特征值,并证明E+A可逆.

设j是的一特征值,则有X,使得AX=jX.而又有A^2×X=A(AX)=A(jX)=j(AX)=j^2×X因为A^2=A,故有:j^2×X=j×X即j^2=j求得j=0j=1由A^2=A有A^2-A-

设3阶方阵A的特征值为2,-1,0,求B=2A^3-5A^2+3E的特征值和B的行列式.

因为A的特征值为2,-1,0所以B的特征值为g(2),g(-1),g(0),其中g(x)=2x^3-5x^2+3即B的特征值为-1,-4,3所以|B|=-1*(-4)*3=12.

设4阶方阵A满足条件:| 3 I +A | = 0,AAT= 2I,| A | < 0,求A*的一个特征值.

由|3I+A|=0得|A-(-3)I|=0,所以,A有一个特征值-3由A×AT=2I,两边取行列式得:|A|×|A|=2^4=16,又|A|<0,所以,|A|=-4因为A×A*=|A|I,设A对应于特

设A是三阶矩阵,它的特征值是-1,1,4,若A+B=2E,求矩阵B的特征值.E+A^-1的特征值与A^-1一样吗?

A的特征值是-1,1,4所以B=2E-A的特征值是(2-λ):3,1,-2.E+A^-1与A^-1的特征值不同若a是A^-1的特征值,则a+1是E+A^-1的特征值

三阶矩阵A的特征值为1,-1,2,设B=A^3-3A^2,求|B|

设A的正交化矩阵是X,X'表示X的逆,则X'AX=d(1,-1,2),(X'AX)^3=X‘A^3X=d(1,-1,8),(X'AX)^2=X'A^2X=d(1,1,4),X'BX=X'A^3X-3X

设行列式A=(400,031,013),求A的特征值与其对应的特征向量

400031013|A-λE|=4-λ0003-λ1013-λ=(4-λ)[(3-λ)^2-1]=(4-λ)^2(2-λ)所以A的特征值为2,4,4(A-2E)X=0的基础解系为:a1=(0,1,-1

设detA不等于0,λ是A的特征值,x是相应的特征向量,求伴随矩阵A的特征值和特征向量

由已知,Ax=λx等式两边左乘A*得A*Ax=λA*x所以|A|x=λA*x由于|A|≠0,所以λ≠0所以A*x=(|A|/λ)x所以|A|/λ是A*的特征值,x仍是相应的特征向量

【线性代数】设A=[111,111,111],求矩阵A的特征值和特征向量

P=(P1,P2,P3)^t,P^(-1)=-1.1.01..-1.10.1.-1Λ^5=diag(32.-32.1)P^(-1)AP=Λ=diag(2.-2.1)A=PΛP^(-1)A^5=PΛ^5

设A为n阶实矩阵,AA^t=Ⅰ,|A|<0,试求(A^(-1))^*的一个特征值

AA^t=Ⅰ,则A为正交矩阵.两边取行列式得:|A|*|A^T|=1又|A|<0则|A|=|A^T|=-1因为:(A^(-1))^*A^(-1)=|A^(-1)|*E所以:(A^(-1))^*=|A^

线性代数二次型 设A满足A^2-3A+2E=0,其中E为单位矩阵,试求2*(A逆)+3E的特征值

设λ是A的特征值则λ^2-3λ+2是A^2-3A+2E的特征值.而A^2-3A+2E=0,零矩阵的特征值只能是0所以λ^2-3λ+2=0即(λ-1)(λ-2)=0所以λ=1或λ=2.所以A^-1的特征

设矩阵A=-1 1 0 -4 3 0 1 0 2(1)求A的特征值和特征向量;

|A-λE|=(2-λ)[(-1-λ)(3-λ)+4]=(2-λ)(λ^2-2λ+1)=(2-λ)(1-λ)^2.所以A的特征值为1,1,2.(A-E)X=0的基础解系为a1=(1,2,-1)^T.所

设A的特征向量A={-1 0 2; 1 2 -1; 1 3 0},求A的特征值以及对应的特征向量

~你好!很高兴为你解答,~如果你认可我的回答,请及时点击【采纳为满意回答】按钮~~手机提问者在客户端右上角评价点“满意”即可.~~你的采纳是我前进的动力~~祝你学习进步!有不明白的可以追问!谢谢!~

线性代数(相似矩阵)设A∽B,B的特征值为1,-2,-3,①求A-¹的特征值;②求A伴随的特征值.

相似矩阵的特征值相同吧逆矩阵的特征值是原矩阵的倒数吧伴随是逆乘以|A|吧,|A|=1×-2×-3=6,特征值就是逆的6倍吧

线性代数特征值设n阶方阵A满足A^2-3A+2E=0(E为单位矩阵),求A得特征值

设a是A的任一一个特征值,则a^2-3a+2=0,从而a=1或2.进而A的特征值为1和2.

设n阶矩阵A满足条件A^2-3A+2E=0 求A的特征值. 麻烦具体步骤写下 谢谢

 所以A的所有特征值,只能是1或是2.希望对你有用.

设λ=0是n阶方阵A的一个特征值,则|A|=?

行列式的值等于特征值乘积0

设3*3齐次线性方程组AX=0有非零解,1和2均为方阵A的特征值,求/A*A-2A+3E/

因为AX=0有非零解,所以0是A的特征值所以A的特征值为0,1,2所以A^2-2A+3E的特征值为(x^2-2x+3):3,2,3.所以|A^2-2A+3E|=3*2*3=18.

设A为3阶矩阵,2是A的一个2重特征值,-1为它的另一个特征值,则|A|=?求计算过程,

结果为2*2*(-1)=-4因为有这个结论,一个矩阵的行列式等于它的各个特征值之积,我刚考完线代,复习了很久呢.