设a=1 2 3 4 r是a上的等价关系求r的传递闭包

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 22:44:44
设a=1 2 3 4 r是a上的等价关系求r的传递闭包
设R是A上的自反和传递关系,证明R∩R^-1是A上的等价关系.

显然R∩R^-1是自反和传递的,因而只需证明R∩R^-1是对称的即可任给(x,y)属于R∩R^-1,即xRy且xR^-1y,则易知yR-1x且yRx即(x,y)属于R∩R^-1.所以R∩R^-1是对称

设F是从A到B的一个函数,定义A上的关系R:aRb当且仅当f(a)=f(b),证明:R是A上的等价关系.

很显然,R是A上的非空关系,因为恒等关系IA包含于R.对任意的a∈A,aRa是显然的.自反性成立.对任意的a,b∈A,若aRb,则f(a)=f(b),所以bRa.对称性成立.对任意的a,b,c∈A,若

离散数学证明等价关系设A为正整数集,在A上定义二元关系R:属于R当且仅当xv=yu,证明R是一个等价关系,

(1)对于任意的x,y∈A,因为xy=yx所以∈R故R是自反的(2)对于任意的∈R所以xv=uy所以uy=xv所以∈R故R是对称的(3)对于任意的∈R且∈R所以xv=uy且uz=wv所以xz=xwv/

设R是集合A上的等价关系,S={|c∈A,aRc∧cRb},证明S是A上的等价关系

对于任意的a∈A,因为R是等价关系,所以aRa,由S的定义可知(a,a>∈S.所以S非空且有自反性.如果∈S,那么存在c∈A,使得aRc,cRb.因为R是等价关系,有对称性,所以bRc,cRa,由S的

设R是集合A上的等价关系.若A含有n个元素,R作为集合含有s个元素,商集A/R含有r个元素,证明rs>=n^2

设A/R的r个元素的势分别为x1,……,xr则x1+……+xr=n,x1^2+……+xr^2=s由基本不等式有s≥n^2/r故rs≥n^2

设A={1,2,3.,19,20},R是A上由x≡ymod5定义的等价关系,求商集A/R.

因为1,6,11,16mod5=12,7,12,17mod5=23,8,13,18mod5=34,9,14,19mod5=45,10,15,20mod5=0所以A/R={[0],[1],[2],[3]

设A={1,2,3},R={,,,},则R是等价关系.

错误,即R不是等价关系.因为等价关系要求有自反性xRx,但不在R中.

设R是N*N上的关系,定义如下:(A,B)R(C,D)AD=BC,证明R是等价关

先证明自反性:对任意(a,a)有aa=aa成立,所以(a,a)R(a,a),(a,a)具有自反性在证明对称性:对任意(a,b)有ab=ba成立,所以(a,b)R(b,a),(a,b)具有对称性最后证明

设R是A上的自反关系,且当(a,b)属于R和(b,c)属于R时,必有(c,a)属于R,证明R是A上的等价关系

1、R是自反关系则(b,b)属于R2、当(a,b)属于R,利用1可以得到(b,a)属于R,对称性得证3、R具备反身、对称、传递故等价关系

离散数学:设A=(1,2,3)R为AxA上的等价关系,R={,,}求r(R),s(R),t(R)

(R)=R∪I={,,,,,},其中I是恒等关系.s(R)=R∪R逆={,,,,,},其中R逆是R的逆关系.t(R)=R∪R^2∪R^3={,,,,,,,,}.

设A是所有自然数集合定义A上的二元关系R为 对任意的X ,Y属于A,XRY当且仅当X+Y是偶数 正明R是A上的等价关系

证明:1.对任意的X属于A,X+X=2X是偶数====》XRX2.对任意的X,Y属于A,如果XRY,则X+Y是偶数====》Y+X=X+Y是偶数>XRZ所以R是A上的等价关系

设A=(1,2,3)R为AxA上的等价关系,且属于R.当且仅当a+b=c+d 问:(1)设I为AxA上的恒等关系,求R-

A×A={,,,,,,,,}A×A中的任意一个元素的a+b之和的范围是2到6,其中a+b=2的有一个,是.a+b=3的有二个,是,.a+b=4的有三个,是,,.a+b=5的有二个,是,.a+b=6的有

设集合A上的关系R,S是等价关系,证明R∩S也是A上的等价关系,并举例说明R∪S不一定是

第一个验证一下就行任何X属于A(X,X)属于R(X,X)属于S所以属于R∩S(自反性)若(X,Y)属于R∩S则(X,Y)属于R(X,Y)属于S所以(Y,X)属于R(Y,X)属于S所以(Y,X)属于R∩

设S={1,2,3,4},并设A=SxS,在A上定义关系R为:R并且当a+b=c+d,证明R是等价关系

设S={1,2,3,4},并设A=SxS,在A上定义关系R为:R当且仅当a+b=c+d,证明R是等价关系.  证明只需验证如下3个条件,即知A是一个等价关系.  1)自反性:对任意∈A,因a+b=a+

设R是非空集合A上的关系,如果 1)对任意a∈A,都有 a R a; 2)若aRb,aRc,则bRc;证明:R是等价关系

只要再证对称性和传递性.对称性:已知aRa,对任意b,如果aRb,那么根据条件2有bRa.传递性:对任意a,b,c,如果aRb且bRc,那么根据对称性有bRa,再根据条件2就有aRc.

设r是a上的自反关系,证明r是a上等价关系的充分必要条件是:若属于r且属于r,有属于r

必要性:当r是a上的等价关系时,由等价关系的传递性,显然有属于r且属于r时,有属于r.充分性:由r是a上自反性关系,所以自反性自然成立.于是∈r,若∈r.则由∈r且∈r(注意书写顺序),有∈r,(若写

设集合A上的关系R,S是等价关系,证明R∩S也是A上的等价关系,并举例说明R∪S不一定是等价关系

水中溶有少量空气,容器壁的表面小空穴中也吸附着空气,这些小气泡起气化核的作用.水对空气的溶解度及器壁对空气的吸附量随温度的升高而减少.当水被加热时,气泡首先在容器壁上生成.气泡生成之后,气泡内部的容器

设R是A上的等价关系,证明R^2=R

比较容易证明:因为R是传递关系R^2包含于R,下证R包含于R^2任意元素(x,y)属于R,因为R满足自反关系,所以(y,y)属于R所以(x,y)*(y,y)=(x,y)属于R*R因此R包含于R^2所以